Determination of Nusselt Number Over Artificially Roughened Solar Air Heater Using Numerical Approach

Author(s):  
Amit Kumar ◽  
Dheeraj Kumar ◽  
Apurba Layek
Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1099
Author(s):  
Hwi-Ung Choi ◽  
Kwang-Hwan Choi

In this study, a two-dimensional CFD (computational fluid dynamics) analysis was performed to investigate the heat-transfer and fluid-friction characteristics in a solar air heater having a transverse triangular block at the bottom of the air duct. The Reynolds number, block height (e), pitch (P), and length (l) were chosen as design parameters. The results are validated by comparing the Nusselt number predicted by simulation with available experimental results. Renormalization-group (RNG) k - ε model with enhanced wall-treatment was selected as the most appropriate turbulence model. From the results, it was found that the presence of a transverse triangular block produces a higher Nusselt number than that of smooth air duct. The enhancement in Nusselt number varied from 1.19 to 3.37, according to the geometric conditions investigated. However, the use of transverse triangular block also results in significantly higher friction losses. The thermohydraulic performance (THPP) was also estimated and has a maximum value of 1.001 for height (e) of 20 mm, length (l) of 120 mm, and pitch (P) of 150 mm, at Reynolds number of 8000. Furthermore, in the present study, correlations of the Nusselt number and friction factor were developed as a function of geometrical conditions of the transverse triangular block and Reynolds number, which can be used to predict the value of Nusselt number and friction factor with the absolute percentage deviations of 3.29% and 7.92%, respectively.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Shantanu Purohit ◽  
N. Madhwesh ◽  
K. Vasudeva Karanth ◽  
N. Yagnesh Sharma

This study presents an innovative idea to augment heat transfer to an air heater using helicoidal finned arrangement. A parametric analysis of the helicoidal shaped fin geometry is considered with helicoidal pitch ratio of 0.1666–0.3, fin diameter ratio of 1.75–2. For the placement of the fin beneath the absorber plate, longitudinal pitch ratio ranging from 0.0416 to 0.1666 are used. The flow Reynolds number used for the study ranges from 4800 to 25,000. The effects of helicoidal pitch ratio, wire diameter ratio and longitudinal pitch ratio on Nusselt number and friction factor have been discussed. It is seen from the analysis that there is a significant improvement in Nusselt number for the case of helicoidal fin of wire diameter ratio of 1 when compared to base model as well as straight fin model for the operating range of Reynolds number. It is also observed from the analysis that for the helicoidal fin configuration of helicoidal pitch ratio of 0.2333, friction factor appears to be moderate. Flow and roughness parameters for roughened solar air heater have been optimized using thermal-hydraulic enhancement factor (THEF). The study reveals that by the use of helicoidal fins, maximum enhancement in the Nusselt number is found to be 2.21 times when compared to the base model for longitudinal pitch ratio of 0.0416, helicoidal pitch ratio of 0.166 for a fixed wire diameter. The improvement obtained in performance corresponding to increased Nusselt number establishes the efficacy the helicoidal fin design for the absorber plate.


Sign in / Sign up

Export Citation Format

Share Document