Explainable Artificial Intelligence Model: Analysis of Neural Network Parameters

Author(s):  
Sandip Kumar Pal ◽  
Amol A. Bhave ◽  
Kingshuk Banerjee
Author(s):  
Alejandro Lopez-Rincon ◽  
Alberto Tonda ◽  
Lucero Mendoza-Maldonado ◽  
Daphne G.J.C. Mulders ◽  
Richard Molenkamp ◽  
...  

ABSTRACTIn this paper, deep learning is coupled with explainable artificial intelligence techniques for the discovery of representative genomic sequences in SARS-CoV-2. A convolutional neural network classifier is first trained on 553 sequences from available repositories, separating the genome of different virus strains from the Coronavirus family with considerable accuracy. The network’s behavior is then analyzed, to discover sequences used by the model to identify SARS-CoV-2, ultimately uncovering sequences exclusive to it. The discovered sequences are first validated on samples from other repositories, and proven able to separate SARS-CoV-2 from different virus strains with near-perfect accuracy. Next, one of the sequences is selected to generate a primer set, and tested against other state-of-the-art primer sets on existing datasets, obtaining competitive results. Finally, the primer is synthesized and tested on patient samples (n=6 previously tested positive), delivering a sensibility similar to routine diagnostic methods, and 100% specificity. In this paper, deep learning is coupled with explainable artificial intelligence techniques for the discovery of representative genomic sequences in SARS-CoV-2. A convolutional neural network classifier is first trained on 553 sequences from NGDC, separating the genome of different virus strains from the Coronavirus family with accuracy 98.73%. The network’s behavior is then analyzed, to discover sequences used by the model to identify SARS-CoV-2, ultimately uncovering sequences exclusive to it. The discovered sequences are validated on samples from NCBI and GISAID, and proven able to separate SARS-CoV-2 from different virus strains with near-perfect accuracy. Next, one of the sequences is selected to generate a primer set, and tested against other state-of-the-art primer sets, obtaining competitive results. Finally, the primer is synthesized and tested on patient samples (n=6 previously tested positive), delivering a sensibility similar to routine diagnostic methods, and 100% specificity. The proposed methodology has a substantial added value over existing methods, as it is able to both identify promising primer sets for a virus from a limited amount of data, and deliver effective results in a minimal amount of time. Considering the possibility of future pandemics, these characteristics are invaluable to promptly create specific detection methods for diagnostics.


Author(s):  
Dominik Schiller ◽  
Tobias Huber ◽  
Florian Lingenfelser ◽  
Michael Dietz ◽  
Andreas Seiderer ◽  
...  

2020 ◽  
pp. 1-11
Author(s):  
Wenjuan Ma ◽  
Xuesi Zhao ◽  
Yuxiu Guo

The application of artificial intelligence and machine learning algorithms in education reform is an inevitable trend of teaching development. In order to improve the teaching intelligence, this paper builds an auxiliary teaching system based on computer artificial intelligence and neural network based on the traditional teaching model. Moreover, in this paper, the optimization strategy is adopted in the TLBO algorithm to reduce the running time of the algorithm, and the extracurricular learning mechanism is introduced to increase the adjustable parameters, which is conducive to the algorithm jumping out of the local optimum. In addition, in this paper, the crowding factor in the fish school algorithm is used to define the degree or restraint of teachers’ control over students. At the same time, students in the crowded range gather near the teacher, and some students who are difficult to restrain perform the following behavior to follow the top students. Finally, this study builds a model based on actual needs, and designs a control experiment to verify the system performance. The results show that the system constructed in this paper has good performance and can provide a theoretical reference for related research.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


2019 ◽  
Vol 17 (1) ◽  
pp. 69-76
Author(s):  
Mohammad Shiddiq Ghozali

Perkembangan Teknologi Informasi dan Komunikasi begitu pesat di zaman sekarang ini. Diikuti pula dengan perkembangan di bidang Artificial Intelligence (AI) atau Kecerdasan Buatan. Di Indonesia sendiri masih belum begitu populer dikalangan masyarakat akan tetapi perusahaan-perusahaan IT berlomba-lomba menciptakan inovasi dibidang Kecerdasan Buatan dan penerapan Kecerdasan Buatan disegala aspek kehidupan. Contoh kasus di Automated Teller Machine (ATM), seringkali terjadi kejahatan di ATM seperti pengintaian nomor pin, skimming, lebanese loop dan kejahatan lainnya. Walaupun di ATM sudah terdapat CCTV akan tetapi penjahat menggunakan alat bantu untuk menutupi wajahnya seperti helm, topi, masker dan kacamata hitam. Biasanya didepan pintu masuk ATM terpampang larangan untuk tidak menggunakan helm, topi, masker dan kacamata hitam serta tidak membawa rokok. Akan tetapi larangan itu masih tetap ada yang melanggar, dikarenakan tidak ada tindak lanjut ketika seseorang menggunakan benda-benda yang dilarang dibawa kedalam ATM. Oleh karena itu penulis membuat sistem pendeteksi obyek di bidang Kecerdasan Buatan untuk mendeteksi benda-benda yang dilarang digunakan ketika berada di ATM. Salah satu metode yang digunakan untuk menciptakan Object Detection yaitu You Only Look Once (YOLO). Implementasi ide ini tersedia pada DARKNET (open source neural network). Cara kerja YOLO yaitu dengan melihat seluruh gambar sekali, kemudian melewati jaringan saraf sekali langsung mendeteksi object yang ada. Oleh karena itu disebut You Only Look Once (YOLO). Pada penelitian ini, penulis membuat sistem yang masih dalam bentuk pengembangan, sehingga menjalankannya masih menggunakan command prompt. Keywords : Automated Teller Machine (ATM), Kecerdasan Buatan, Pendeteksi Obyek, You Only Look Once (YOLO)  


2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


2018 ◽  
Vol 145 ◽  
pp. 488-494 ◽  
Author(s):  
Aleksandr Sboev ◽  
Alexey Serenko ◽  
Roman Rybka ◽  
Danila Vlasov ◽  
Andrey Filchenkov

Sign in / Sign up

Export Citation Format

Share Document