Effect of Water Pressure to Water Loss in Water Distribution Network

InCIEC 2013 ◽  
2014 ◽  
pp. 795-803
Author(s):  
Irma Noorazurah Mohamad ◽  
Nur Syahiza Zainuddin ◽  
Azianabiha A. Halip @ Khalid ◽  
Mohmad Radhwan Abd Karim
Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 278 ◽  
Author(s):  
Stavroula Chatzivasili ◽  
Katerina Papadimitriou ◽  
Vasilis Kanakoudis

Water pressure management in a water distribution network (WDN) is a key component applied to achieve desirable water quality as well as a trouble-free operation of the network. This paper presents a hybrid, two-stage approach, to provide optimal separation of a WDN into District Metered Areas (DMAs), improving both water age and pressure. The first stage aims to divide the WDN into smaller areas via the Geometric Partitioning method, which is based on Recursive Coordinate Bisection (RCB). Subsequently, the Student’s t-mixture model (SMM) is applied to each area, providing an optimal placement of isolation valves and separating the network in DMAs. The model is evaluated on a realistic network generated through Watergems and is compared against one variation of it implemented, including the Gaussian Mixture Model (GMM) as well as the Genetic Algorithm (GA) approach, obtaining impressive performance. The implementation of both stages was deployed in a MATLAB environment through the Epanet toolkit. The proposed system is very promising, especially for large size WDNs due to the decreased running time and noteworthy reduction of pressure and water age.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2143
Author(s):  
John J. Erickson ◽  
Yamileth C. Quintero ◽  
Kara L. Nelson

Intermittent piped water supply is common in low- and middle-income countries and is inconvenient for users, particularly when supply schedules are unreliable. In this study, supply schedules and operational challenges were characterized in intermittent areas of the Arraiján, Panama distribution network based on one year of pressure and flow monitoring in four study zones, analysis of three years of pipe break data, and observations of system operation. Service quality was found to vary among users and supply schedules were often irregular and unpredictable. Direct causes of unanticipated supply outages included pump failures, chronic pipe breaks in specific parts of the system, transmission main breaks, irregular valve operations, and treatment plant outages. The extent and duration of these outages were often increased by high rates of water loss, insufficient storage capacity, and difficulty detecting and resolving infrastructure failures. Factors associated with intermittent supply, such as intermittent pumping, appeared to be associated with a higher frequency of pipe breaks. However, the analysis did not indicate a strong general correlation between intermittent supply and pipe breaks. Pressure and flow monitoring in intermittent supply areas, similar to that undertaken in this study, could be a valuable tool to improve regular operations as well as longer-term planning and prioritization of system improvements. Water loss reduction and adequate distribution storage capacity could also mitigate the effects of operational failures. Investments in monitoring and data analysis have the potential to improve the reliability of intermittent supply in cases where continuous supply is not immediately feasible.


2020 ◽  
Vol 2 (1) ◽  
pp. 69
Author(s):  
Konstantinos Angelidis ◽  
Eleni Stavrotheodorou

Acoustic survey methods have been used in recent years in Greece due to rapid growth of technology for leakage detection in water distribution networks. The application of the latest methodologies and technologies allowed water authorities to improve the efficiency of their water supply networks. Thessaloniki’s water distribution network is an aging and inefficient one so the use of these methods in the last fifteen years has considerably improved the utility’s capability to reduce the losses of drinking water. The use of acoustic loggers on network fittings that record leakage noise in fixed time steps has a considerable effect in Thessaloniki’s water distribution network, which is characterized by a high level of complexity. A major challenge facing Thessaloniki Water Supply and Sewerage CO S.A. (EYATH S.A.) is how to deal with high levels of water loss, and acoustic survey methods are now seen as having an increasingly wide range of benefits, not only including environmental and water conservation benefits of reducing leak flow rate but also improving its performance in water loss management. The paper presents the implementation of the acoustic survey method for leakage detection and reduction in various field areas of Thessaloniki and the interconnected municipalities. Key parameters have been taken included, such as the complexity of water distribution network, the reliability of available mapping, the established zones with respective flow metering, and the existence of high background noise. Results are analyzed in order to examine the efficiency of the acoustic logging technology.


2021 ◽  
Vol 6 (1) ◽  
pp. 88-103
Author(s):  
Erizaldy Azwar ◽  
Diki Surya Irawan ◽  
Muhammad Naufal

Water distribution networks that are unoptimally operated can cause various problems so that water flows are not evenly distributed to consumers. One of the causes is the high water loss level due to leaks in the distribution pipeline system, as one of the water operators in Jakarta, Indonesia, PT. XYZ has tremendous efforts to improve the water supply system. One of them is to reduce physical water losses. The estimated percentage of physical water losses of water distribution networks in Green Garden District, West Jakarta, in April 2018 has amounted to 30%. It is still above the tolerance standard for the national water loss rate in Indonesia's Water Utilities, around 20%. It is necessary to reduce water loss to overcome this problem. After performing a step test program in the Green Garden District, it was found that there was a water loss of 84 lps in July 2018, which increased to 103.16 l/sin in May 2019 or showed an increase of 23%. Then, a pressure calibration was undertaken by placing six pressure monitoring points on the district in May 2019 using hydraulic simulation from WaterGEMS V.10. This calibration obtained the highest pressure Gap at pressure monitoring point #5 of 2.5 mH2O and the lowest pressure monitoring point #1 of 1.03 mH2O. Subsequently, leak detection measures were conducted to reduce physical water loss from January to May 2019,  PT. XYZ water distribution network uses two leak detection methods, visible and invisible leak detections, which had successfully reduced its net night flows (NNFs). The leak repairs obtained 77 leak points, which consisted of 32 visible leaks and 45 invisible leaks. Total estimated leakage flows of 5.33 lps were obtained from the decrease in the net night flow, which indicates a decrease in physical water loss by 16% from January to March 2019.


2010 ◽  
Vol 10 (5) ◽  
pp. 740-745
Author(s):  
I. H. Hyun ◽  
S. Khishigjargal ◽  
Y. W. Chang ◽  
D. H. Kim ◽  
S. Dockko

The unidirectional and conventional flushing methods are compared in this study and the water amount and flow velocity at junctions within an EPANET water distribution network are compared. In the unidirectional method, the necessary flow and water pressure for the minimum flow velocity for flushing become greater when pipe diameter exceeds a certain value. Therefore, the maximum length of flushable pipeline decreases. The velocity in a pipeline is not highly dependent on the number of open hydrants; in contrast, the velocity in a pipeline after conventional flushing increases with the number of open hydrants. The hydrant discharge flow is smaller in unidirectional flushing than in conventional flushing. However, the percentage of velocities above 1.0 m/s or 1.5 m/s in a flow is relatively higher in conventional flushing when multiple hydrants are open concurrently. Moreover, preplanning or choice of an exact target area is more necessary for unidirectional flushing than for conventional flushing. In this research, a flushing path that can generate optimum effects with less hydrant discharge flow can be observed when conventional and unidirectional flushing processes are applied to specific components in advance.


2020 ◽  
Vol 2 (1) ◽  
pp. 51
Author(s):  
Nikolaos Kourbasis ◽  
Menelaos Patelis ◽  
Stavroula Tsitsifli ◽  
Vasilis Kanakoudis

Water distribution networks suffer from high levels of water losses due to leaks and breaks, mainly due to high operating pressure. One of the most well-known methods to reduce water losses is pressure management. However, when the operating pressure in a water distribution network reduces, the time the water stays within the network (called water age) increases. Increased water age means deteriorated water quality. In this paper, water pressure in relation to water age is addressed in a water distribution network in Greece. Using simulation and optimization tools, the optimum solution is found to reduce water age and operating pressure at the same time. In addition, District Metered Areas are formed and water age is optimized.


Sign in / Sign up

Export Citation Format

Share Document