The mechanism of retention of pelagic tomcod, Microgadus tomcod, larvae and juveniles in the well-mixed part of the St. Lawrence Estuary

1990 ◽  
Vol 29 (4) ◽  
pp. 293-302 ◽  
Author(s):  
Réjean Laprise ◽  
Julian J. Dodson
2012 ◽  
Vol 20 (2) ◽  
pp. 749-760 ◽  
Author(s):  
Célie Dupuy ◽  
Catherine M. Couillard ◽  
Jean Laroche ◽  
Pierre Nellis ◽  
Pauline Brousseau ◽  
...  

2019 ◽  
Vol 76 (7) ◽  
pp. 2235-2246 ◽  
Author(s):  
Lucie Vanalderweireldt ◽  
Gesche Winkler ◽  
Marc Mingelbier ◽  
Pascal Sirois

Abstract After being extirpated from the St. Lawrence Estuary (SLE), striped bass (Morone saxatilis) were reintroduced in 2002, and by 2008 they were naturally reproducing. The increase of this reintroduced population prompted the need to document its nursery habitats utilization, which contribute to species recruitment. We analysed mortality-dispersion rates and the growth of larvae and juveniles in relation to their occurrence and migration patterns. From June to September 2014, we collected striped bass distributed in four estuarine habitats: the upstream freshwater section (UP), the oligohaline (O-ETM) and the mesohaline (M-ETM) estuarine turbidity maximum zone, and the downstream polyhaline section (DOWN). Based on otolith microstructure and microchemistry, 305 back-calculated growth and 36 migration trajectories have been reconstructed. The UP and the O-ETM provided optimal conditions wherein which larvae and juveniles exhibited fastest growth. In the SLE, we emphasized the co-existence of a freshwater resident contingent and two migrant contingents to the M-ETM and DOWN. We propose that migrants adopt an adaptive migration behaviour to avoid suboptimal conditions and strong intraspecific competition from resident in the upstream habitats. The potential advantage of a downstream migration later in the season might be an adaptative strategy to promote their survival during the early life stages.


2013 ◽  
Vol 10 (11) ◽  
pp. 7609-7622 ◽  
Author(s):  
M. Alkhatib ◽  
P. A. del Giorgio ◽  
Y. Gelinas ◽  
M. F. Lehmann

Abstract. The distribution of dissolved organic nitrogen (DON) and carbon (DOC) in sediment porewaters was determined at nine locations along the St. Lawrence estuary and in the gulf of St. Lawrence. In a previous manuscript (Alkhatib et al., 2012a), we have shown that this study area is characterized by gradients in the sedimentary particulate organic matter (POM) reactivity, bottom water oxygen concentrations, and benthic respiration rates. Based on the porewater profiles, we estimated the benthic diffusive fluxes of DON and DOC in the same area. Our results show that DON fluxed out of the sediments at significant rates (110 to 430 μmol m−2 d−1). DON fluxes were positively correlated with sedimentary POM reactivity and varied inversely with sediment oxygen exposure time (OET), suggesting direct links between POM quality, aerobic remineralization and the release of DON to the water column. DON fluxes were on the order of 30 to 64% of the total benthic inorganic fixed N loss due to denitrification, and often exceeded the diffusive nitrate fluxes into the sediments. Hence they represented a large fraction of the total benthic N exchange, a result that is particularly important in light of the fact that DON fluxes are usually not accounted for in estuarine and coastal zone nutrient budgets. In contrast to DON, DOC fluxes out of the sediments did not show any significant spatial variation along the Laurentian Channel (LC) between the estuary and the gulf (2100 ± 100 μmol m−2 d−1). The molar C / N ratio of dissolved organic matter (DOM) in porewater and the overlying bottom water varied significantly along the transect, with lowest C / N in the lower estuary (5–6) and highest C / N (> 10) in the gulf. Large differences between the C / N ratios of porewater DOM and POM are mainly attributed to a combination of selective POM hydrolysis and elemental fractionation during subsequent DOM mineralization, but selective adsorption of DOM to mineral phases could not be excluded as a potential C / N fractionating process. The extent of this C- versus N- element partitioning seems to be linked to POM reactivity and redox conditions in the sediment porewaters. Our results thus highlight the variable effects selective organic matter (OM) preservation can have on bulk sedimentary C / N ratios, decoupling the primary source C / N signatures from those in sedimentary paleoenvironmental archives. Our study further underscores that the role of estuarine sediments as efficient sinks of bioavailable nitrogen is strongly influenced by the release of DON during early diagenetic reactions, and that DON fluxes from continental margin sediments represent an important internal source of N to the ocean.


2021 ◽  
Vol 166 ◽  
pp. 112180
Author(s):  
Michael Zuykov ◽  
Galina Kolyuchkina ◽  
Graeme Spiers ◽  
Michel Gosselin ◽  
Philippe Archambault ◽  
...  

Author(s):  
Yves Paradis ◽  
Marc Pépino ◽  
Simon Bernatchez ◽  
Denis Fournier ◽  
Léon L’Italien ◽  
...  

1984 ◽  
Vol 62 (4) ◽  
pp. 778-794 ◽  
Author(s):  
Christopher S. Lobban

From a study of living materials and specimens in several regional herbaria, a list has been drawn up of all the common and several of the rarer tube-dwelling diatoms of eastern Canada. Descriptions, illustrations of living material and acid-cleaned valves, and a key to the species are provided. Most specimens were from the Atlantic Provinces and the St. Lawrence estuary, but a few were from the Northwest Territories. By far the most common species is Berkeleya rutilans. Other species occurring commonly in the Quoddy Region of the Bay of Fundy, and sporadically in space and time elsewhere, arc Navicula delognei (two forms), Nav. pseudocomoides, Nav. smithii, Haslea crucigera, and a new species, Nav.rusticensis. Navicula ramosissima and Nav. mollis in eastern Canada are usually found as scattered cohabitants in tubes of other species. Nitzschia tubicola and Nz. fontifuga also occur sporadically as cohabitants.


1999 ◽  
Vol 56 (12) ◽  
pp. 2420-2432 ◽  
Author(s):  
Bruno A Zakardjian ◽  
Jeffrey A Runge ◽  
Stephane Plourde ◽  
Yves Gratton

As an essential step in modeling the influence of circulation on the population dynamics of marine planktonic copepods, we define a simple formulation of swimming behavior that can be used in both Eulerian and Lagrangian models. This formulation forces aggregation of the population toward a preferential depth and can be stage specific and time varying, thus allowing description of either diurnal or seasonal vertical migration. We use the formulation to examine the interaction between the circulation and vertical distribution in controlling horizontal distribution of the common planktonic copepod Calanus finmarchicus in the Lower St. Lawrence Estuary, Canada. We first introduce diel migration into a simple one-dimensional model and then into a model of residual two-dimensional circulation patterns representative of conditions encountered in the Lower St. Lawrence Estuary. Results from the latter indicate that interactions between circulation and stage-specific swimming behaviors are the main mechanisms for aggregation of planktonic crustaceans at the head of the Laurentian Channel and highlight the implications of flushing of the surface-dwelling young stages for the population dynamics of C. finmarchicus in the Lower St. Lawrence Estuary.


1998 ◽  
Vol 36 (3) ◽  
pp. 271-295 ◽  
Author(s):  
R.F. Marsden ◽  
Y. Gratton

2005 ◽  
Vol 50 (5) ◽  
pp. 1654-1666 ◽  
Author(s):  
Denis Gilbert ◽  
Bjorn Sundby ◽  
Charles Gobeil ◽  
Alfonso Mucci ◽  
Gilles-H. Tremblay

Sign in / Sign up

Export Citation Format

Share Document