A biophysical model of the interaction between vertical migration of crustacean zooplankton and circulation in the Lower St. Lawrence Estuary

1999 ◽  
Vol 56 (12) ◽  
pp. 2420-2432 ◽  
Author(s):  
Bruno A Zakardjian ◽  
Jeffrey A Runge ◽  
Stephane Plourde ◽  
Yves Gratton

As an essential step in modeling the influence of circulation on the population dynamics of marine planktonic copepods, we define a simple formulation of swimming behavior that can be used in both Eulerian and Lagrangian models. This formulation forces aggregation of the population toward a preferential depth and can be stage specific and time varying, thus allowing description of either diurnal or seasonal vertical migration. We use the formulation to examine the interaction between the circulation and vertical distribution in controlling horizontal distribution of the common planktonic copepod Calanus finmarchicus in the Lower St. Lawrence Estuary, Canada. We first introduce diel migration into a simple one-dimensional model and then into a model of residual two-dimensional circulation patterns representative of conditions encountered in the Lower St. Lawrence Estuary. Results from the latter indicate that interactions between circulation and stage-specific swimming behaviors are the main mechanisms for aggregation of planktonic crustaceans at the head of the Laurentian Channel and highlight the implications of flushing of the surface-dwelling young stages for the population dynamics of C. finmarchicus in the Lower St. Lawrence Estuary.

2001 ◽  
Vol 58 (4) ◽  
pp. 647-658 ◽  
Author(s):  
Stéphane Plourde ◽  
Pierre Joly ◽  
Jeffrey A Runge ◽  
Bruno Zakardjian ◽  
Julian J Dodson

The life cycle of Calanus finmarchicus in the lower St. Lawrence estuary is described based on observations of female egg production rate, population stage abundance, and chlorophyll a biomass collected over 7 years (1991–1997) at a centrally located monitoring station. The mean seasonal pattern shows maximum abundance of females in May, but peak population egg production rate and naupliar (N3–N6) abundance occur in early July just after onset of the late spring – early summer phytoplankton bloom. The population stage structure is characterized by low summer abundance of early copepodite stages C1–C3 and high stage C5 abundance in autumn. Between 1994 and 1997, there was important interannual variation in both timing (up to 1 month) and amplitude (five- to eight-fold) of population reproduction. Patterns of seasonal increase of C5 abundance in autumn suggest interannual variations of both timing and magnitude of deep upstream advection of this overwintering stage. Thus, the main features of C. finmarchicus population dynamics in the central lower St. Lawrence Estuary are (i) late reproduction resulting from food limitation prior to the onset of the summer phytoplankton bloom, (ii) probable export of early developmental stages during summer, and (iii) advection into the central lower St. Lawrence Estuary of overwintering stage C5 in autumn from downstream regions. These results support the hypothesis that circulation, mainly driven by discharge from the St. Lawrence River and its tributaries, is a key factor governing population dynamics of C. finmarchicus in this region.


2004 ◽  
Vol 61 (5) ◽  
pp. 712-720 ◽  
Author(s):  
Anissa Merzouk ◽  
Maurice Levasseur ◽  
Michael Scarratt ◽  
Sonia Michaud ◽  
Michel Gosselin

The influence of the diurnal vertical migration of the dinoflagellates Alexandrium tamarense and Scrippsiella trochoidea on dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) dynamics was studied during a 34-h Lagrangian experiment in the St. Lawrence Estuary in July 2000. Particulate DMSP (DMSPp), dissolved DMSP (DMSPd), and DMS exhibited diel patterns with minimum concentrations during the night and maximum concentrations around noon. DMSPp concentrations were correlated with the abundance of the two vertically migrating DMSP-rich dinoflagellates. The DMSPp:Chl a ratio exhibited similar diel variations, suggesting a light-induced de novo DMSP synthesis during the day. Diel variations of the DMS:Chl a ratio suggest that the accumulation of DMS around noon resulted from physiological responses of the algae and (or) bacteria to light. Biological gross DMS production and bacterial DMS consumption were decoupled, leading to rapid fluctuations in DMS. These results show that in systems dominated by DMSP-rich dinoflagellates containing DMSP lyases, DMS concentrations may vary by as much as a factor of 10 over a 24-h period. Such diel variations must be considered when estimating the contribution of such systems to the DMS sea to air flux.


1977 ◽  
Vol 34 (11) ◽  
pp. 2104-2116 ◽  
Author(s):  
Paul Greisman ◽  
Grant Ingram

The horizontal distribution of nutrients in the St. Lawrence estuary during early July of 1975 is presented. The major sources of nutrients to the estuarine system appeared to be from the St. Lawrence River and the intermediate layer of the Laurentian Channel. By the assumption of simple mixing and conservation, the surface distribution of nutrients has been calculated. Differences between the calculated and observed values may be attributable to consumption, variability of the freshwater source and of the internal tide amplitude. Key words: nutrient distribution, estuarine circulation, mixing


2013 ◽  
Vol 10 (11) ◽  
pp. 7609-7622 ◽  
Author(s):  
M. Alkhatib ◽  
P. A. del Giorgio ◽  
Y. Gelinas ◽  
M. F. Lehmann

Abstract. The distribution of dissolved organic nitrogen (DON) and carbon (DOC) in sediment porewaters was determined at nine locations along the St. Lawrence estuary and in the gulf of St. Lawrence. In a previous manuscript (Alkhatib et al., 2012a), we have shown that this study area is characterized by gradients in the sedimentary particulate organic matter (POM) reactivity, bottom water oxygen concentrations, and benthic respiration rates. Based on the porewater profiles, we estimated the benthic diffusive fluxes of DON and DOC in the same area. Our results show that DON fluxed out of the sediments at significant rates (110 to 430 μmol m−2 d−1). DON fluxes were positively correlated with sedimentary POM reactivity and varied inversely with sediment oxygen exposure time (OET), suggesting direct links between POM quality, aerobic remineralization and the release of DON to the water column. DON fluxes were on the order of 30 to 64% of the total benthic inorganic fixed N loss due to denitrification, and often exceeded the diffusive nitrate fluxes into the sediments. Hence they represented a large fraction of the total benthic N exchange, a result that is particularly important in light of the fact that DON fluxes are usually not accounted for in estuarine and coastal zone nutrient budgets. In contrast to DON, DOC fluxes out of the sediments did not show any significant spatial variation along the Laurentian Channel (LC) between the estuary and the gulf (2100 ± 100 μmol m−2 d−1). The molar C / N ratio of dissolved organic matter (DOM) in porewater and the overlying bottom water varied significantly along the transect, with lowest C / N in the lower estuary (5–6) and highest C / N (> 10) in the gulf. Large differences between the C / N ratios of porewater DOM and POM are mainly attributed to a combination of selective POM hydrolysis and elemental fractionation during subsequent DOM mineralization, but selective adsorption of DOM to mineral phases could not be excluded as a potential C / N fractionating process. The extent of this C- versus N- element partitioning seems to be linked to POM reactivity and redox conditions in the sediment porewaters. Our results thus highlight the variable effects selective organic matter (OM) preservation can have on bulk sedimentary C / N ratios, decoupling the primary source C / N signatures from those in sedimentary paleoenvironmental archives. Our study further underscores that the role of estuarine sediments as efficient sinks of bioavailable nitrogen is strongly influenced by the release of DON during early diagenetic reactions, and that DON fluxes from continental margin sediments represent an important internal source of N to the ocean.


2021 ◽  
Vol 166 ◽  
pp. 112180
Author(s):  
Michael Zuykov ◽  
Galina Kolyuchkina ◽  
Graeme Spiers ◽  
Michel Gosselin ◽  
Philippe Archambault ◽  
...  

Author(s):  
Yves Paradis ◽  
Marc Pépino ◽  
Simon Bernatchez ◽  
Denis Fournier ◽  
Léon L’Italien ◽  
...  

1984 ◽  
Vol 62 (4) ◽  
pp. 778-794 ◽  
Author(s):  
Christopher S. Lobban

From a study of living materials and specimens in several regional herbaria, a list has been drawn up of all the common and several of the rarer tube-dwelling diatoms of eastern Canada. Descriptions, illustrations of living material and acid-cleaned valves, and a key to the species are provided. Most specimens were from the Atlantic Provinces and the St. Lawrence estuary, but a few were from the Northwest Territories. By far the most common species is Berkeleya rutilans. Other species occurring commonly in the Quoddy Region of the Bay of Fundy, and sporadically in space and time elsewhere, arc Navicula delognei (two forms), Nav. pseudocomoides, Nav. smithii, Haslea crucigera, and a new species, Nav.rusticensis. Navicula ramosissima and Nav. mollis in eastern Canada are usually found as scattered cohabitants in tubes of other species. Nitzschia tubicola and Nz. fontifuga also occur sporadically as cohabitants.


Sign in / Sign up

Export Citation Format

Share Document