Extracellular enzymes in a small polyhumic lake: origin, distribution and activities

Hydrobiologia ◽  
1992 ◽  
Vol 243-244 (1) ◽  
pp. 47-59 ◽  
Author(s):  
U. M�nster ◽  
J. Nurminen ◽  
P. Eini� ◽  
J. Overbeck
Hydrobiologia ◽  
1992 ◽  
Vol 229 (1) ◽  
pp. 225-238 ◽  
Author(s):  
U. Münster ◽  
P. Einiö ◽  
J. Nurminen ◽  
J. Overbeck

2020 ◽  
Vol 14 (2) ◽  
pp. 15
Author(s):  
Zaidah Zainal ariffin

Fungi is known to produce a wide range of biologically active metabolites and enzymes. Enzymes produced by fungi are utilized in food and pharmaceutical industries because of their rich enzymatic profile. Filamentous fungi are particularly interesting due to their high production of extracellular enzymes which has a large industrial potential. The aim of this study is to isolate potential soil fungi species that are able to produce functional enzymes for industries. Five Aspergillus species were successfully isolated from antibiotic overexposed soil (GPS coordinate of N3.093219 E101.40269) by standard microbiological method. The isolated fungi were identified via morphological observations and molecular tools; polymerase chain reactions, ITS 1 (5’- TCC GTA GGT GAA CCT GCG G3’) forward primer and ITS 4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) reverse primer. The isolated fungi were identified as Aspergillus sydowii strain SCAU066, Aspergillus tamarii isolate TN-7, Aspergillus candidus strain KUFA 0062, Aspergillus versicolor isolate BAB-6580, and Aspergillus protuberus strain KAS 6024. Supernatant obtained via submerged fermentation of the isolated fungi in potato dextrose broth (PDB) and extracted via centrifugation was loaded onto specific media to screen for the production of xylanolytic, cellulolytic and amylolytic enzymes. The present findings indicate that Aspergillus sydowii strain SCAU066 and Aspergillus versicolor isolate BAB-6580 have great potential as an alternative source of xylanolytic, cellulolytic and amylolytic enzymes.


2016 ◽  
Vol 12 (2) ◽  
pp. 155-160
Author(s):  
Zahra Seifi ◽  
Ali Z. Mahmoudabadi ◽  
Sharzad Hydrinia ◽  
Marzieh Halvaeezadeh

Author(s):  
Reda Bellaouchi ◽  
Houssam Abouloifa ◽  
Yahya Rokni ◽  
Amina Hasnaoui ◽  
Nabil Ghabbour ◽  
...  

Abstract Background This work aims to study the optimal conditions of the fermentation culture medium used for the production of extracellular enzymes (amylase, cellulase, lipase, and protease) from previously isolated Aspergillus niger strains in date by-products. Results The five most powerful isolates selected based on the zone of degradation formed on Petri plates by the substrate were subjected to the quantitative evaluation of their enzymatic production. All five strains showed almost similar API-ZYM profiles, with minor variations observed at the level of some specific enzyme expression. The production of cellulase and amylase was depending on pH and incubation temperatures. ASP2 strain demonstrated the high production rate of amylase (at pH 5 and 30 °C) and cellulase (at pH 6 and 30 °C) for 96 h of incubation. Conclusion The A. niger showed the ability to produce several extracellular enzymes and can be used in the valorization of different agroindustrial residues.


Toxics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Kamila Šrédlová ◽  
Kateřina Šírová ◽  
Tatiana Stella ◽  
Tomáš Cajthaml

Metabolites of polychlorinated biphenyls (PCBs)—hydroxylated PCBs (OH‑PCBs), chlorobenzyl alcohols (CB‑OHs), and chlorobenzaldehydes (CB‑CHOs)—were incubated in vitro with the extracellular liquid of Pleurotus ostreatus, which contains mainly laccase and low manganese-dependent peroxidase (MnP) activity. The enzymes were able to decrease the amount of most of the tested OH‑PCBs by > 80% within 1 h; the removal of more recalcitrant OH‑PCBs was greatly enhanced by the addition of the laccase mediator syringaldehyde. Conversely, glutathione substantially hindered the reaction, suggesting that it acted as a laccase inhibitor. Hydroxylated dibenzofuran and chlorobenzoic acid were identified as transformation products of OH‑PCBs. The extracellular enzymes also oxidized the CB‑OHs to the corresponding CB‑CHOs on the order of hours to days; however, the mediated and nonmediated setups exhibited only slight differences, and the participating enzymes could not be determined. When CB‑CHOs were used as the substrates, only partial transformation was observed. In an additional experiment, the extracellular liquid of Irpex lacteus, which contains predominantly MnP, was able to efficiently transform CB‑CHOs with the aid of glutathione; mono‑ and di-chloroacetophenones were detected as transformation products. These results demonstrate that extracellular enzymes of ligninolytic fungi can act on a wide range of PCB metabolites, emphasizing their potential for bioremediation.


Sign in / Sign up

Export Citation Format

Share Document