scholarly journals Degradation Products of Polychlorinated Biphenyls and Their In Vitro Transformation by Ligninolytic Fungi

Toxics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Kamila Šrédlová ◽  
Kateřina Šírová ◽  
Tatiana Stella ◽  
Tomáš Cajthaml

Metabolites of polychlorinated biphenyls (PCBs)—hydroxylated PCBs (OH‑PCBs), chlorobenzyl alcohols (CB‑OHs), and chlorobenzaldehydes (CB‑CHOs)—were incubated in vitro with the extracellular liquid of Pleurotus ostreatus, which contains mainly laccase and low manganese-dependent peroxidase (MnP) activity. The enzymes were able to decrease the amount of most of the tested OH‑PCBs by > 80% within 1 h; the removal of more recalcitrant OH‑PCBs was greatly enhanced by the addition of the laccase mediator syringaldehyde. Conversely, glutathione substantially hindered the reaction, suggesting that it acted as a laccase inhibitor. Hydroxylated dibenzofuran and chlorobenzoic acid were identified as transformation products of OH‑PCBs. The extracellular enzymes also oxidized the CB‑OHs to the corresponding CB‑CHOs on the order of hours to days; however, the mediated and nonmediated setups exhibited only slight differences, and the participating enzymes could not be determined. When CB‑CHOs were used as the substrates, only partial transformation was observed. In an additional experiment, the extracellular liquid of Irpex lacteus, which contains predominantly MnP, was able to efficiently transform CB‑CHOs with the aid of glutathione; mono‑ and di-chloroacetophenones were detected as transformation products. These results demonstrate that extracellular enzymes of ligninolytic fungi can act on a wide range of PCB metabolites, emphasizing their potential for bioremediation.

Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 400 ◽  
Author(s):  
Lucie Linhartová ◽  
Klára Michalíková ◽  
Kamila Šrédlová ◽  
Tomáš Cajthaml

Chlorhexidine (CHX) and octenidine (OCT), antimicrobial compounds used in oral care products (toothpastes and mouthwashes), were recently revealed to interfere with human sex hormone receptor pathways. Experiments employing model organisms—white-rot fungi Irpex lacteus and Pleurotus ostreatus—were carried out in order to investigate the biodegradability of these endocrine-disrupting compounds and the capability of the fungi and their extracellular enzyme apparatuses to biodegrade CHX and OCT. Up to 70% ± 6% of CHX was eliminated in comparison with a heat-killed control after 21 days of in vivo incubation. An additional in vitro experiment confirmed manganese-dependent peroxidase and laccase are partially responsible for the removal of CHX. Up to 48% ± 7% of OCT was removed in the same in vivo experiment, but the strong sorption of OCT on fungal biomass prevented a clear evaluation of the involvement of the fungi or extracellular enzymes. On the other hand, metabolites indicating the enzymatic transformation of both CHX and OCT were detected and their chemical structures were proposed by means of liquid chromatography–mass spectrometry. Complete biodegradation by the ligninolytic fungi was not achieved for any of the studied analytes, which emphasizes their recalcitrant character with low possibility to be removed from the environment.


Author(s):  
Sitompul Afrida ◽  
Toshihiro Watanabe ◽  
Yutaka Tamai

Previous screening analyses demonstrated that the in vivo biobleaching activities of the white-rot fungi Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 are higher than those of Phanerochaete chrysosporium and Trametes versicolor. The purpose of the current study was to examine the production of extracellular enzymes of these four white-rot fungi grown on three types of low-cost media containing agricultural and forestry waste, and to evaluate the ability of the produced extracellular enzymes to biobleach Acacia oxygen-delignified kraft pulp (A-OKP). The biobleaching activity of extracellular fractions of I. lacteus, L. tigrinus, T. versicolor, and P. chrysosporium cultures was the most pronounced after 3 days of incubation with Acacia mangium wood powder supplemented with rice bran and 1% glucose (WRBG) with resultant Kappa number reduction of 4.4%, 6.7%, 3.3%, and 3.3%, respectively. Therefore, biobleaching ability of I. lacteus and L. tigrinus have been shown to be higher than of T. versicolor and P. chrysosporium, both in vivo and in vitro.


Biologia ◽  
2014 ◽  
Vol 69 (4) ◽  
Author(s):  
Slavomíra Murínová ◽  
Katarína Dercová ◽  
Milan Čertík ◽  
Katarína Lászlová

AbstractOnly bacteria sufficiently resistant to the toxic compounds in their environment can be used for the efficient biodegradation process in order to eliminate a widespread contamination by polychlorinated biphenyls (PCBs). The presence of PCBs results in bacterial controlled rigidification of cytoplasmic membrane. The four bacterial isolates from long-term PCB-contaminated soil (Alcaligenes xylosoxidans, Pseudomonas stutzeri) and sediment (Ochrobactrum anthropi, Pseudomonas veronii) have been used to select the strain most adapted to the PCBs, i.e. with efficient changes in the membrane phospholipid fatty acids. PCBs and their toxic degradation products — the 3-chlorobenzoic acids (3-CBA as the most toxic one) — were added separately to the liquid medium with glucose in two experimental sets: at lag phase and in stationary phase of bacterial growth in order to evaluate the effects of chemicals to cytoplasmic membrane. The main parameter — the changes in fatty acids composition (in the total lipids and the main membrane phospholipid phosphatidyletanolamine) were studied. 3-CBA caused growth inhibition when added at lag phase. However, when added during the stationary growth, inhibition was not observed. Similarly, after addition of PCBs to the stationary growth culture, inhibition of growth was not observed with all tested strains (except for P. stutzeri). This fact indicates the importance of time contact of bacteria during growth phase with xenobiotics. O. anthropi and A. xylosoxidans appeared to be the most adapted to the presence of PCBs (with sufficient membrane adaptation), active under the adverse conditions, and able to survive in the contaminated environment.


1976 ◽  
Vol 22 (1) ◽  
pp. 104-106 ◽  
Author(s):  
S. Safe ◽  
B. E. Ellis ◽  
O. Hutzinger

Incubation of 4′-chloro-4-biphenylol with a mushroom tyrosinase preparation gave the catechol, 4′-chIoro-3,4-biphenyldiol as the sole in vitro metabolite. This compound was identical with the major rat urinary metabolite of 4′-chloro-4-biphenylol and thus confirms the structure assigned to the metabolite. This result also demonstrates a possible degradation pathway of hydroxylated chlorobiphenyls which are themselves the major metabolic degradation products of polychlorinated biphenyls.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


1988 ◽  
Vol 59 (02) ◽  
pp. 310-315 ◽  
Author(s):  
P W Koppert ◽  
E Hoegee-de Nobel ◽  
W Nieuwenhuizen

SummaryWe have developed a sandwich-type enzyme immunoassay (EIA) for the quantitation of fibrin degradation products (FbDP) in plasma with a time-to-result of only 45 minutes.* The assay is based on the combination of the specificities of two monoclonal antibodies (FDP-14 and DD-13), developed in our institute. FDP-14, the capture antibody, binds both fibrinogen degradation products (FbgDP) and FbDP, but does not react with the parent fibrin(ogen) molecules. It has its epitope in the E-domain of the fibrinogen molecule on the Bβ-chain between amino acids 54-118. Antibody DD-13 was raised using D-dimer as antigen and is used as a tagging antibody, conjugated with horse-radish peroxidase. A strong positive reaction is obtained with a whole blood clot lysate (lysis induced by tissue-type plasminogen activator) which is used as a standard. The EIA does virtually not detect FbgDP i. e. purified fragments X, Y, or FbgDP generated in vitro in plasma by streptokinase treatment. This indicates that the assay is specific for fibrin degradation products.We have successfully applied this assay to the plasma of patients with a variety of diseased states. In combination with the assay previously developed by us for FbgDP and for the total amount of FbgDP + FbDP (TDP) in plasma, we are now able to study the composition of TDP in patients plasma in terms of FbgDP and FbDP.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


1969 ◽  
Vol 22 (03) ◽  
pp. 496-507 ◽  
Author(s):  
W.G van Aken ◽  
J Vreeken

SummaryCarbon particles cause platelet aggregation in vitro and in vivo. Prior studies established that substances which modify thrombocyte aggregation also influence the rate at which carbon is cleared from the blood.This study was performed in order to elucidate the mechanism by which the carbon-platelet aggregates specifically accumulate in the RES.Activation of fibrinolysis by urokinase or streptokinase reduced the carbon clearance rate, probably due to generated fibrinogen degradation products (FDP). Isolated FDP decreased the carbon clearance and caused disaggregation of platelets and particles in vitro. Inhibition of fibrinolysis by epsilon-amino-caproic acid (EACA), initially accelerated the disappearance of carbon and caused particle accumulation outside the RES, predominantly in the lungs. It is supposed that platelet aggregation and locally activated fibrinolysis act together in the clearance of particles. In the normal situation the RES with its well known low fibrinolytic activity, becomes the receptor of the particles.


1972 ◽  
Vol 28 (01) ◽  
pp. 031-048 ◽  
Author(s):  
W. H. E Roschlau ◽  
R Gage

SummaryInhibition of blood platelet aggregation by brinolase (fibrinolytic enzyme from Aspergillus oryzae) has been demonstrated with human platelets in vitro and with dog platelets in vivo and in vitro, using both ADP and collagen as aggregating stimuli. It is suggested that the optimal inhibitory effects of brinolase occur indirectly through the generation of plasma fibrinogen degradation products, without compromising platelet viability, rather than by direct proteolysis of platelet structures.


1997 ◽  
Vol 77 (04) ◽  
pp. 725-729 ◽  
Author(s):  
Mario Colucci ◽  
Silvia Scopece ◽  
Antonio V Gelato ◽  
Donato Dimonte ◽  
Nicola Semeraro

SummaryUsing an in vitro model of clot lysis, the individual response to a pharmacological concentration of recombinant tissue plasminogen activator (rt-PA) and the influence on this response of the physiological variations of blood parameters known to interfere with the fibrinolytic/thrombolytic process were investigated in 103 healthy donors. 125I-fibrin labelled blood clots were submersed in autologous plasma, supplemented with 500 ng/ml of rt-PA or solvent, and the degree of lysis was determined after 3 h of incubation at 37° C. Baseline plasma levels of t-PA, plasminogen activator inhibitor 1 (PAI-1), plasminogen, α2-anti-plasmin, fibrinogen, lipoprotein (a), thrombomodulin and von Willebrand factor as well as platelet and leukocyte count and clot retraction were also determined in each donor. rt-PA-induced clot lysis varied over a wide range (28-75%) and was significantly related to endogenous t-PA, PAI-1, plasminogen (p <0.001) and age (p <0.01). Multivariate analysis indicated that both PAI-1 antigen and plasminogen independently predicted low response to rt-PA. Surprisingly, however, not only PAI-1 but also plasminogen was negatively correlated with rt-PA-ginduced clot lysis. The observation that neutralization of PAI-1 by specific antibodies, both in plasma and within the clot, did not potentiate clot lysis indicates that the inhibitor, including the platelet-derived form, is insufficient to attenuate the thrombolytic activity of a pharmacological concentration of rt-PA and that its elevation, similarly to the elevation of plasminogen, is not the cause of clot resistance but rather a coincident finding. It is concluded that the in vitro response of blood clots to rt-PA is poorly influenced by the physiological variations of the examined parameters and that factors other than those evaluated in this study interfere with clot dissolution by rt-PA. In vitro clot lysis test might help to identify patients who may be resistant to thrombolytic therapy.


Sign in / Sign up

Export Citation Format

Share Document