Bloom formation of Gloeotrichia echinulata and Aphanizomenon flos-aquae in a shallow, eutrophic, Danish lake

Hydrobiologia ◽  
1994 ◽  
Vol 289 (1-3) ◽  
pp. 193-197 ◽  
Author(s):  
Jacobsen Bodil Aavad

2021 ◽  
Vol 9 (3) ◽  
pp. 336
Author(s):  
Stephanie K. Moore ◽  
John B. Mickett ◽  
Gregory J. Doucette ◽  
Nicolaus G. Adams ◽  
Christina M. Mikulski ◽  
...  

Efforts to identify in situ the mechanisms underpinning the response of harmful algae to climate change demand frequent observations in dynamic and often difficult to access marine and freshwater environments. Increasingly, resource managers and researchers are looking to fill this data gap using unmanned systems. In this study we integrated the Environmental Sample Processor (ESP) into an autonomous platform to provide near real-time surveillance of harmful algae and the toxin domoic acid on the Washington State continental shelf over a three-year period (2016–2018). The ESP mooring design accommodated the necessary subsystems to sustain ESP operations, supporting deployment durations of up to 7.5 weeks. The combination of ESP observations and a suite of contextual measurements from the ESP mooring and a nearby surface buoy permitted an investigation into toxic Pseudo-nitzschia spp. bloom dynamics. Preliminary findings suggest a connection between bloom formation and nutrient availability that is modulated by wind-forced coastal-trapped waves. In addition, high concentrations of Pseudo-nitzschia spp. and elevated levels of domoic acid observed at the ESP mooring location were not necessarily associated with the advection of water from known bloom initiation sites. Such insights, made possible by this autonomous technology, enable the formulation of testable hypotheses on climate-driven changes in HAB dynamics that can be investigated during future deployments.



2008 ◽  
Vol 51 (4) ◽  
pp. 633-641 ◽  
Author(s):  
Naithirithi Tiruvenkatachary Chellappa ◽  
Sarah Laxhmi Chellappa ◽  
Sathyabama Chellappa

The aim of this work was to study the eutrophication in the tropical freshwater ecosystems and the consequent cyanobacterial bloom formation and economical damage to fisheries and harmful effects to public health. Mass fish mortality due to toxin producing cyanobacterial blooms was registered during December 2003 in Marechal Dutra Reservoir, Acari/RN, Northeast Brazil. Phytoplankton and fish samplings were carried out on alternate days during the episode of fish mortality and monthly during January to June 2004. The cyanobacterial toxin was identified and quantified from the seston samples and liver of the dead fishes using the standard HPLC method. The results indicated that the toxic blooms of Cylindrospermopsis raciborskii and Microcystis aeruginosa were persistent for two weeks and represented 90% of the phytoplankton species assemblages. The lethally affected fishes were Oreochromis niloticus, Plagioscion squamosissimus, Cichla monoculus, Prochilodus brevis, Hoplias malabaricus and Leporinus friderici. The microcystin levels varied from 0.07 to 8.73µg L-1 the seston samples and from 0.01 to 2.59µg g-1in the liver samples of the fishes during the bloom period.



PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76663 ◽  
Author(s):  
Elizabeth D. Tobin ◽  
Daniel Grünbaum ◽  
Johnathan Patterson ◽  
Rose Ann Cattolico


1998 ◽  
Vol 20 (4) ◽  
pp. 691-708 ◽  
Author(s):  
Bojan Sedmak ◽  
Gorazd Kosi




2014 ◽  
Vol 59 (2) ◽  
pp. 373-382
Author(s):  
Xuchun Qiu ◽  
Yohei Shimasaki ◽  
Yukifumi Yoshida ◽  
Tadashi Matsubara ◽  
Yasuhiro Yamasaki ◽  
...  


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2265
Author(s):  
Peng Gu ◽  
Qi Li ◽  
Hao Zhang ◽  
Xin Luo ◽  
Weizhen Zhang ◽  
...  

Cyanobacterial blooms caused by eutrophication in Lake Taihu have led to ecological threats to freshwater ecosystems. A pilot scale experiment was implemented to investigate the relationship between cyanobacteria and other aquatic plants and animals in simulated eutrophic ecosystems under different phosphorus (P) regimes. The results of this study showed that cyanobacteria had two characteristics favorable for bloom formation in eutrophic ecosystems. One is the nutrient absorption. The presence of alkaline phosphatase was beneficial for algal cells in nutrition absorption under low P concentration. Cyanobacteria exhibited a stronger ability to absorb and store P compared to Vallisneria natans, which contributed to the fast growth of algal cells between 0.2 and 0.5 mg·L−1 of P (p < 0.05). However, P loads affected only the maximum biomass, but not the growth phases. The growth cycle of cyanobacteria remained unchanged and was not related to P concentration. P cycling indicated that 43.05–69.90% of the total P existed in the form of sediment, and P content of cyanobacteria showed the highest increase among the organisms. The other is the release of microcystin. Toxic microcystin-LR was released into the water, causing indirectly the growth inhibition of Carassius auratus and Bellamya quadrata and the reduction of microbial diversity. These findings are of importance in exploring the mechanism of cyanobacterial bloom formation and the nutrient management of eutrophic lakes.



Sign in / Sign up

Export Citation Format

Share Document