Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato

1993 ◽  
Vol 154 (1) ◽  
pp. 111-117 ◽  
Author(s):  
D. J. Pilbeam ◽  
I. Cakmak ◽  
H. Marschner ◽  
E. A. Kirkby

1993 ◽  
pp. 555-561
Author(s):  
D. J. Pilbeam ◽  
I. Cakmak ◽  
H. Marschner ◽  
E. A. Kirkby


2016 ◽  
Vol 202 (5) ◽  
pp. 384-393 ◽  
Author(s):  
B. W. Hütsch ◽  
T. Osthushenrich ◽  
F. Faust ◽  
A. Kumar ◽  
S. Schubert


1986 ◽  
Vol 13 (3) ◽  
pp. 399 ◽  
Author(s):  
PW Hattersley ◽  
NE Stone

The activities of eight key photosynthetic enzymes were measured in leaf blade extracts of the C3-C4 intermediate Neurachne minor S. T. Blake, its C3 and C4 relatives, C3-C4 Panicum milioides Nees ex Trin., and controls (all Poaceae). Phosphoenolpyruvate (PEP) carboxylase (PEPC) activity in N. minor (5.46 �mol mg Chl-1 min-1) is higher than previously reported for any other C3-C3 plant, and the ratio of ribulose-1,5-bisphosphate carboxylase activity to PEPC activity is lower than for P. milioides or C3 species. Activity of pyruvate,PI dikinase (up to 0.88 �mol mg Chl-1 min-1) is 3-5 times higher than in P. milioides. Assays of NADP-malic enzyme (NADP-ME), NAD-malic enzyme (NAD-ME) and PEP carboxykinase (PCK) show Paraneurachne muelleri (Hack.) S. T. Blake and Neurachne munroi (F. Muell.) F. Muell., N. minor's two close C4 relatives, to be NADP-ME type, as predicted from leaf anatomy. Aspartate and alanine aminotransferase activities in these species are higher than expected, however. N. minor (C3-C4) exhibits higher C4 acid decarboxylase activity than C3 species or P. milioides, for NADP-ME only (up to 1.07 �mol mg Chl-1 min-1). Our results suggest that N. minor possesses a limited C4 acid cycle, and that it is the most C4-like C3-C4 intermediate grass currently identified, comparable with some of the known C3-C4 Flaveria (Asteraceae) species.



1979 ◽  
Vol 57 (5) ◽  
pp. 543-547 ◽  
Author(s):  
Ceredwyn Smith ◽  
Ahmed Doo ◽  
Alan W. Bown

In vitro phosphoenolpyruvate (PEP) carboxylase activity from Avena coleoptile tissue was investigated over a range of pH values which include cytosol pH values. Increasing the pH from 7.0 to 7.5 increased optimal PEP carboxylase activity (Vmax) by over 100%. In the presence of rate-limiting 0.07 mM PEP, noncompetitive inhibition by 0.1 mM malate decreased from 80% at pH 7.1 to 50% at pH 7.5. The Km for PEP was not influenced by malate, but as the pH was increased from 7.1 to 7.5, the Km decreased from 0.16 to 0.08 mM. Over the same pH rise, the KI for malate inhibition increased from 0.04 mM to 0.09 mM. Fusicoccin had no detectable influence on enzymic activity. These results are discussed in relation to the stimulation of H+ excretion and dark CO2 fixation by indoleacetic acid and fusicoccin. The data indicate that any increase in cytosol pH, resulting from H+ excretion, would stimulate PEP carboxylase activity by promoting catalytic efficiency and binding affinity for PEP and by reducing the binding affinity for the inhibitor malate.



1978 ◽  
Vol 56 (4) ◽  
pp. 404-407 ◽  
Author(s):  
B. C. Hill ◽  
A. W. Bown

Preparations of phosphoenolpyruvate (PEP) carboxylase activity from Avenu sativa coleoptile tissue were assayed by measuring the incorporation of labelled bicarbonate into a derivative of oxaloacetic acid or by coupling oxaloacetic acid production to malate dehydrogenase activity and the oxidation of NADH. Malate inhibition of PEP carboxylase activity was found to be noncompetitive, was not due to a mass action effect on the coupled enzyme system or to chelation of Mg2+, and probably involved direct inhibition of the enzyme by malate. Maximal PEP carboxylase activity was exhibited around pH 8.0 and increased 125% between pH 7.0 and pH 7.6. Inhibition by 4 mML-malate was virtually complete at pH 7.0 and decreased to 10% inhibition at pH 8. This information is discussed in the light of data which demonstrates that in response to IAA. coleoptile tissue accumulates malate and secretes H+. The regulatory properties of PEP carboxylase are consistent with a role in malate production which could resist increases in intracellular pH resulting from an auxin-stimulated H+ efflux.



2018 ◽  
Vol 178 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Hugo Alonso-Cantabrana ◽  
Asaph B. Cousins ◽  
Florence Danila ◽  
Timothy Ryan ◽  
Robert E. Sharwood ◽  
...  


1989 ◽  
Vol 12 (1) ◽  
pp. 85-94 ◽  
Author(s):  
P.A. Arnozis ◽  
A.J. Barneix


1967 ◽  
Vol 13 (11) ◽  
pp. 1413-1419 ◽  
Author(s):  
George A. Din ◽  
Isamu Suzuki ◽  
Howard Lees

Carbon dioxide fixation was studied in intact cells and cell-free extracts of Ferrobacillus ferrooxidans. The major pathways of fixation were found to be the carboxydismutase system and the phosphoenolpyruvate (PEP) carboxylase system. PEP carboxylase activity was shown to be under metabolic regulation, similar to the regulation established in heterotrophic microorganisms.Acetyl-CoA stimulated PEP carboxylase activity, while aspartate was inhibitory. The F. ferrooxidans enzyme appeared to have a neutral or acidic pH optimum, in contrast to the same enzyme isolated from heterotrophs.



Sign in / Sign up

Export Citation Format

Share Document