dark fixation
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 2)

H-INDEX

23
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Zhen Liu ◽  
Yuqing Zhang ◽  
Yanfei Sun ◽  
Wei Feng ◽  
Zongrui Lai ◽  
...  

2015 ◽  
Vol 42 (8) ◽  
pp. 711 ◽  
Author(s):  
Klaus Winter ◽  
Joseph A. M. Holtum

Jatropha curcas L. is a drought-tolerant shrub or small tree that is a candidate bioenergy feedstock. It is a member of the family Euphorbiaceae in which both CAM and C4 photosynthesis have evolved. Here, we report that J. curcas exhibits features diagnostic of low-level CAM. Small increases in nocturnal acid content were consistently observed in photosynthetic stems and occasionally in leaves. Acidification was associated with transient contractions in CO2 loss at night rather than with net CO2 dark fixation. Although the CAM-type nocturnal CO2 uptake signal was masked by background respiration, estimates of dark CO2 fixation based upon the 2 : 1 stoichiometric relationship between H+ accumulated and CO2 fixed indicated substantial carbon retention in the stems via the CAM cycle. It is proposed that under conditions of drought, low-level CAM in J. curcas stems serves primarily to conserve carbon rather than water.


2011 ◽  
Vol 74 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Emilio O. Casamayor ◽  
Marc Llirós ◽  
Antonio Picazo ◽  
Albert Barberán ◽  
Carles M. Borrego ◽  
...  

2010 ◽  
Vol 76 (14) ◽  
pp. 4633-4639 ◽  
Author(s):  
Shelley E. Hoeft ◽  
Thomas R. Kulp ◽  
Sukkyun Han ◽  
Brian Lanoil ◽  
Ronald S. Oremland

ABSTRACT Red-pigmented biofilms grow on rock and cobble surfaces present in anoxic hot springs located on Paoha Island in Mono Lake. The bacterial community was dominated (∼ 85% of 16S rRNA gene clones) by sequences from the photosynthetic Ectothiorhodospira genus. Scraped biofilm materials incubated under anoxic conditions rapidly oxidized As(III) to As(V) in the light via anoxygenic photosynthesis but could also readily reduce As(V) to As(III) in the dark at comparable rates. Back-labeling experiments with 73As(V) demonstrated that reduction to 73As(III) also occurred in the light, thereby illustrating the cooccurrence of these two anaerobic processes as an example of closely coupled arsenotrophy. Oxic biofilms also oxidized As(III) to As(V). Biofilms incubated with [14C]acetate oxidized the radiolabel to 14CO2 in the light but not the dark, indicating a capacity for photoheterotrophy but not chemoheterotrophy. Anoxic, dark-incubated samples demonstrated As(V) reduction linked to additions of hydrogen or sulfide but not acetate. Chemoautotrophy linked to As(V) as measured by dark fixation of [14C]bicarbonate into cell material was stimulated by either H2 or HS−. Functional genes for the arsenate respiratory reductase (arrA) and arsenic resistance (arsB) were detected in sequenced amplicons of extracted DNA, with about half of the arrA sequences closely related (∼98% translated amino acid identity) to those from the family Ectothiorhodospiraceae. Surprisingly, no authentic PCR products for arsenite oxidase (aoxB) were obtained, despite observing aerobic arsenite oxidation activity. Collectively, these results demonstrate close linkages of these arsenic redox processes occurring within these biofilms.


2005 ◽  
Vol 71 (11) ◽  
pp. 6664-6672 ◽  
Author(s):  
Matthias Labrenz ◽  
Günter Jost ◽  
Christa Pohl ◽  
Sabrina Beckmann ◽  
Willm Martens-Habbena ◽  
...  

ABSTRACT Anaerobic or microaerophilic chemolithoautotrophic bacteria have been considered to be responsible for CO2 dark fixation in different pelagic redoxclines worldwide, but their involvement in redox processes is still not fully resolved. We investigated the impact of 17 different electron donor/acceptor combinations in water of pelagic redoxclines from the central Baltic Sea on the stimulation of bacterial CO2 dark fixation as well as on the development of chemolithoautotrophic populations. In situ, the highest CO2 dark fixation rates, ranging from 0.7 to 1.4 μmol liter−1 day−1, were measured directly below the redoxcline. In enrichment experiments, chemolithoautotrophic CO2 dark fixation was maximally stimulated by the addition of thiosulfate, reaching values of up to 9.7 μmol liter−1 CO2 day−1. Chemolithoautotrophic nitrate reduction proved to be an important process, with rates of up to 33.5 μmol liter−1 NO3 − day−1. Reduction of Fe(III) or Mn(IV) was not detected; nevertheless, the presence of these potential electron acceptors influenced the development of stimulated microbial assemblages. Potential chemolithoautotrophic bacteria in the enrichment experiments were displayed on 16S ribosomal complementary DNA single-strand-conformation polymorphism fingerprints and identified by sequencing of excised bands. Sequences were closely related to chemolithoautotrophic Thiomicrospira psychrophila and Maorithyas hadalis gill symbiont (both Gammaproteobacteria) and to an uncultured nitrate-reducing Helicobacteraceae bacterium (Epsilonproteobacteria). Our data indicate that this Helicobacteraceae bacterium could be of general importance or even a key organism for autotrophic nitrate reduction in pelagic redoxclines.


1997 ◽  
Vol 122 (2) ◽  
pp. 233-237 ◽  
Author(s):  
Jun Zhu ◽  
Duane P. Bartholomew ◽  
Guillermo Goldstein

Despite the potential impact of rising global CO2 levels, only a limited number of studies have been conducted on the effects of ambient and elevated CO2 on plants having Crassulacean acid metabolism (CAM). To our knowledge, there are no studies for pineapple [Ananas comosus (L.) Merr.], the most commercially important CAM plant. Pineapple plants were grown at CO2 levels of ≈330 (ambient) and ≈730 (elevated) μmol·mol-1 in open-top chambers for 4 months. The mean air temperature in the chambers was ≈39 °C day/24 °C night. Average plant dry mass at harvest was 180 g per plant at elevated CO2 and 146 g per plant at ambient CO2. More biomass was partitioned to stem and root but less to leaf for plants grown at elevated CO2; leaf thickness was 11% greater at elevated than at ambient CO2. The diurnal difference in leaf titratable acidity (H+) at elevated CO2 reached 347 mmol·m-2, which was up to 42% greater than levels in plants grown in ambient CO2. Carbon isotopic discrimination (Δ) of plants was 3.75% at ambient CO2 and 3.17% at elevated CO2, indicating that CO2 uptake via the CAM pathway was enhanced more by elevated CO2 than uptake via the C3 pathway. The nonphotochemical quenching coefficient (qN) of leaves was ≈45% lower in the early morning for plants grown at elevated than at ambient CO2, while afternoon values were comparable. The qN data suggested that the fixation of external CO2 was enhanced by elevated CO2 in the morning but not in the afternoon when leaf temperature was ≥40 °C. We found no effect of CO2 levels on leaf N or chlorophyll content. Pineapple dry matter gain was enhanced by elevated CO2, mainly due to increased CO2 dark fixation in environments with day temperatures high enough to suppress C3 photosynthesis.


1993 ◽  
Vol 38 (3) ◽  
pp. 483-494 ◽  
Author(s):  
W. K. W. Li ◽  
B. D. Irwin ◽  
P. M. Dickie
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document