Numerical study of dynamic crack growth by the finite element method

1977 ◽  
Vol 13 (6) ◽  
pp. 821-837 ◽  
Author(s):  
D. R. J. Owen ◽  
D. Shantaram
2020 ◽  
Vol 366 ◽  
pp. 113091
Author(s):  
Kota Kishi ◽  
Yuuki Takeoka ◽  
Tsutomu Fukui ◽  
Toshiyuki Matsumoto ◽  
Katsuyuki Suzuki ◽  
...  

2012 ◽  
Vol 446-449 ◽  
pp. 3639-3642
Author(s):  
Hui Xu ◽  
Feng Wang ◽  
Di Zhang

A special method based on the extended finite element method is developed for the simulation of dynamic crack growth. It shows great advantages in the simulations of moving crack and mixed mode crack. The extended finite element method for two-dimensional crack is described in this paper. The crack form of the extended finite element in the homogeneous medium is studied in detail, and the internal detail in crack tip element and crack penetration element is analyzed. At last, the displacement mode is generated.


1994 ◽  
Vol 116 (4) ◽  
pp. 698-704 ◽  
Author(s):  
D. Bonneau ◽  
J. Absi

A numerical study of gas herringbone grooved journal bearings is presented for small number of grooves. The compressible Reynolds equation is solved by use of the Finite Element Method. The nonlinearity of the discretized equations is treated with the Newton-Raphson procedure. A comparison of the results for a smooth bearing with previously published results is made and the domain of validity of the Narrow Groove Theory is analyzed. Load capacity, attitude angle, and stiffness coefficients are given for various configurations: groove angle and thickness of grooves, bearing number, and that for both smooth and grooved member rotating.


Author(s):  
Sanjeev Kumar Singh ◽  
Saroja Kanta Panda

In this paper, a micromechanics method is developed to evaluate effective coefficients of piezoelectric fiber-reinforced composites. An exact solution is derived for effective elastic, piezoelectric and dielectric coefficients of such piezocomposites subjected to the applied load in the direction transverse to the fiber orientation. Simultaneously, based on finite element method, a numerical study is performed on a representative volume element of such piezo composite containing fiber in square packing arrangement. The finite element method provides a numerical solution to evaluate effective elastic, piezoelectric and dielectric coefficients for discrete volume fraction of fiber, the range being 0.1–0.6 for this study. The results are interpolated to understand the overall behavior of such piezocomposites. The results obtained from the micromechanics method and the finite element method are compared with the results obtained from other models based on strength of materials method given in the literature. It is observed that the method developed in this study provides better results for effective coefficients susceptible to fiber packing arrangements.


1997 ◽  
Vol 19 (4) ◽  
pp. 64-72
Author(s):  
Tran Tu V.

The text presents the theoretical base for the construction of the program CGP-TROl. The fictitious crack model and the finite element method are employed for analyzing. This program is created to investigate two-dimensional models for the initiation and growth of the I-mode crack in notched beams in bending. The final result of the fracture analysis is the load-deflection diagram for the prediction of the cohesive crack growth in concrete notched beam in bending.


Sign in / Sign up

Export Citation Format

Share Document