The stability chart of double-diffusive processes with parallel flows ? construction by the Galerkin and continuation methods

1986 ◽  
Vol 20 (2) ◽  
pp. 127-144 ◽  
Author(s):  
M. Magen ◽  
D. Pnueli ◽  
Y. Zvirin
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Carine G. van der Boog ◽  
Henk A. Dijkstra ◽  
Julie D. Pietrzak ◽  
Caroline A. Katsman

AbstractDouble-diffusive processes enhance diapycnal mixing of heat and salt in the open ocean. However, observationally based evidence of the effects of double-diffusive mixing on the global ocean circulation is lacking. Here we analyze the occurrence of double-diffusive thermohaline staircases in a dataset containing over 480,000 temperature and salinity profiles from Argo floats and Ice-Tethered Profilers. We show that about 14% of all profiles contains thermohaline staircases that appear clustered in specific regions, with one hitherto unknown cluster overlying the westward flowing waters of the Tasman Leakage. We estimate the combined contribution of double-diffusive fluxes in all thermohaline staircases to the global ocean’s mechanical energy budget as 7.5 GW [0.1 GW; 32.8 GW]. This is small compared to the estimated energy required to maintain the observed ocean stratification of roughly 2 TW. Nevertheless, we suggest that the regional effects, for example near Australia, could be pronounced.


1985 ◽  
Vol 52 (3) ◽  
pp. 686-692 ◽  
Author(s):  
L. A. Month ◽  
R. H. Rand

This problem is a generalization of the classical problem of the stability of a spinning rigid body. We obtain the stability chart by using: (i) the computer algebra system MACSYMA in conjunction with a perturbation method, and (ii) numerical integration based on Floquet theory. We show that the form of the stability chart is different for each of the three cases in which the spin axis is the minimum, maximum, or middle principal moment of inertia axis. In particular, a rotation with arbitrarily small angular velocity about the maximum moment of inertia axis can be made unstable by appropriately choosing the model parameters. In contrast, a rotation about the minimum moment of inertia axis is always stable for a sufficiently small angular velocity. The MACSYMA program, which we used to obtain the transition curves, is included in the Appendix.


1999 ◽  
Vol 392 ◽  
pp. 213-232 ◽  
Author(s):  
OLIVER S. KERR ◽  
KIT YEE TANG

A fluid stably stratified by a salinity gradient and enclosed between two vertical boundaries can become unstable when it is subjected to a temperature difference between the walls. The linear stability of such a fluid in a vertical slot is investigated. Errors in earlier results are found, confirming recent results of Young & Rosner (1998). Four different asymptotic regimes on the stability boundary are identified. One of these, the limit of a strong salinity gradient, has previously been analysed. The analyses of the separate asymptotic limits of weak salinity gradient, large temperature difference and small wavenumber are also given. These four cases make up much of the total boundary between stability and instability for double-diffusive instabilities in a vertical slot, and so most of this boundary can be mapped out for general Prandtl numbers and salt/heat diffusivity ratios using these results.


2000 ◽  
Vol 123 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Nader Jalili ◽  
Ebrahim Esmailzadeh

A new approach to optimal control of vehicle suspension systems, incorporating actuator time delay, is presented. The inclusion of time delay provides a more realistic model for the actuators, and the problem is viewed from a different perspective rather than the conventional optimal control techniques. The objective here is to select a set of feedback gains such that the maximum vertical acceleration of the sprung mass is minimized, over a wide band frequency range and when subjected to certain constraints. The constraints are dictated by the vehicle stability characteristics and the physical bounds placed on the feedback gains. Utilizing a Simple Quarter Car model, the constrained optimization is then carried out in the frequency domain with the road irregularities described as random processes. Due to the presence of the actuator time delay, the characteristic equation is found to be transcendental rather than algebraic, which makes the stability analysis relatively complex. A new scheme for the stability chart strategy with fixed time delay is introduced in order to address the stability issue. The stability characteristics are also verified utilizing other conventional methods such as the Michailov technique. Results demonstrate that the suspension system, when considering the effect of the actuator time delay, exhibits a completely different behavior.


Sign in / Sign up

Export Citation Format

Share Document