Stability of a Rigid Body With an Oscillating Particle: An Application of MACSYMA

1985 ◽  
Vol 52 (3) ◽  
pp. 686-692 ◽  
Author(s):  
L. A. Month ◽  
R. H. Rand

This problem is a generalization of the classical problem of the stability of a spinning rigid body. We obtain the stability chart by using: (i) the computer algebra system MACSYMA in conjunction with a perturbation method, and (ii) numerical integration based on Floquet theory. We show that the form of the stability chart is different for each of the three cases in which the spin axis is the minimum, maximum, or middle principal moment of inertia axis. In particular, a rotation with arbitrarily small angular velocity about the maximum moment of inertia axis can be made unstable by appropriately choosing the model parameters. In contrast, a rotation about the minimum moment of inertia axis is always stable for a sufficiently small angular velocity. The MACSYMA program, which we used to obtain the transition curves, is included in the Appendix.

1960 ◽  
Vol 7 (3) ◽  
pp. 340-352 ◽  
Author(s):  
O. M. Phillips

When a hollow circular cylinder with its axis horizontal is partially filled with water and rotated rapidly about its axis, an almost rigid-body motion results with an interior free surface. The emotion is analysed assuming small perturbations to a rigid rotation, and a criterion is found for the stability of the motion. This is confirmed experimentally under varying conditions of water depth and angular velocity of the cylinder. The modes of oscillation (centrifugal waves) of the free surface are examined and a frequency equation deduced. Two particular modes are considered in detail, and satisfactory agreement is found with the frequencies observed.


2020 ◽  
Vol 02 (03) ◽  
pp. 2050012
Author(s):  
Bernard Ricardo ◽  
Zhe Wen Yuan

A very important property in the study of rigid body dynamics, moment of inertia describes the resistance of an object to any change in its angular velocity, given a certain amount of torque. Although many novel methods have been developed to simplify its calculation, this paper presents a remarkable theorem in moment of inertia that has never been widely used, the three-axis theorem. The theorem provides an alternative way for moment of inertia computation and better visualization in integrating each infinitesimal constituent mass element of a rigid body. The key idea is to focus on the distance from this infinitesimal mass to the intersection of the three axes, instead of its distance to a certain rotational axis.


Author(s):  
Harry Septanto ◽  
Djoko Suprijanto

In the design of attitude control, rotational motion of the spacecraft is usually considered as a rotation of rigid body. Rotation matrix parameterization using quaternion can represent globally attitude of a rigid body rotational motions. However, the representation is not unique hence implies difficulties on the stability guarantee. This paper presents asymptotically stable analysis of a continuous scheme of quaternion-based control system that has saturation function. Simulations run show that the designed system applicable for a zero initial angular velocity case and a non-zero initial angular velocity case due to utilization of deadzone function as an element of the defined constraint in the stability analysis.


1980 ◽  
Vol 24 (2) ◽  
pp. 213-219 ◽  
Author(s):  
A. T. Granik

The Kelvin–Helmholtz problem in a Hall plasma, including the effects of rotation, is studied. In contrast to previous results, it is shown that if the angular velocity is normal to the wave vector that describes perturbations of the interface, the rotation does not affect the stability of a shear plane. The special case of very small angular velocity is studied and it is shown that the rotation has either a stabilizing or a destabilizing effect, according as the gravitational speed is greater or less than the Alfvén speed.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
A. I. Ismail

In this paper, the problem of the slow spinning motion of a rigid body about a point O, being fixed in space, in the presence of the Newtonian force field and external torque is considered. We achieve the slow spin by giving the body slow rotation with a sufficiently small angular velocity component r 0 about the moving z-axis. We obtain the periodic solutions in a new domain of the angular velocity vector component r 0 ⟶ 0 , define a large parameter proportional to 1 / r 0 , and use the technique of the large parameter for solving this problem. Geometric interpretations of motions will be illustrated. Comparison of the results with the previous works is considered. A discussion of obtained solutions and results is presented.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mourad Choulli ◽  
Masahiro Yamamoto

AbstractUniqueness of parabolic Cauchy problems is nowadays a classical problem and since Hadamard [Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover, New York, 1953], these kind of problems are known to be ill-posed and even severely ill-posed. Until now, there are only few partial results concerning the quantification of the stability of parabolic Cauchy problems. We bring in the present work an answer to this issue for smooth solutions under the minimal condition that the domain is Lipschitz.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shuai Yang ◽  
Haijun Jiang ◽  
Cheng Hu ◽  
Juan Yu ◽  
Jiarong Li

Abstract In this paper, a novel rumor-spreading model is proposed under bilingual environment and heterogenous networks, which considers that exposures may be converted to spreaders or stiflers at a set rate. Firstly, the nonnegativity and boundedness of the solution for rumor-spreading model are proved by reductio ad absurdum. Secondly, both the basic reproduction number and the stability of the rumor-free equilibrium are systematically discussed. Whereafter, the global stability of rumor-prevailing equilibrium is explored by utilizing Lyapunov method and LaSalle’s invariance principle. Finally, the sensitivity analysis and the numerical simulation are respectively presented to analyze the impact of model parameters and illustrate the validity of theoretical results.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


Author(s):  
Da Yang ◽  
Liling Zhu ◽  
Yun Pu

Although traffic flow has attracted a great amount of attention in past decades, few of the studies focused on heterogeneous traffic flow consisting of different types of drivers or vehicles. This paper attempts to investigate the model and stability analysis of the heterogeneous traffic flow, including drivers with different characteristics. The two critical characteristics of drivers, sensitivity and cautiousness, are taken into account, which produce four types of drivers: the sensitive and cautious driver (S-C), the sensitive and incautious driver (S-IC), the insensitive and cautious driver (IS-C), and the insensitive and incautious driver (IS-IC). The homogeneous optimal velocity car-following model is developed into a heterogeneous form to describe the heterogeneous traffic flow, including the four types of drivers. The stability criterion of the heterogeneous traffic flow is derived, which shows that the proportions of the four types of drivers and their stability functions only relating to model parameters are two critical factors to affect the stability. Numerical simulations are also conducted to verify the derived stability condition and further explore the influences of the driver characteristics on the heterogeneous traffic flow. The simulations reveal that the IS-IC drivers are always the most unstable drivers, the S-C drivers are always the most stable drivers, and the stability effects of the IS-C and the S-IC drivers depend on the stationary velocity. The simulations also indicate that a wider extent of the driver heterogeneity can attenuate the traffic wave.


Sign in / Sign up

Export Citation Format

Share Document