Primary and secondary magnetizations in lunar rocks - Implications for the ancient magnetic field of the Moon

1985 ◽  
Vol 33 (1) ◽  
pp. 31-58 ◽  
Author(s):  
D. W. Collinson
Keyword(s):  
The Moon ◽  
Science ◽  
2014 ◽  
Vol 346 (6214) ◽  
pp. 1246753 ◽  
Author(s):  
Benjamin P. Weiss ◽  
Sonia M. Tikoo

The inductive generation of magnetic fields in fluid planetary interiors is known as the dynamo process. Although the Moon today has no global magnetic field, it has been known since the Apollo era that the lunar rocks and crust are magnetized. Until recently, it was unclear whether this magnetization was the product of a core dynamo or fields generated externally to the Moon. New laboratory and spacecraft measurements strongly indicate that much of this magnetization is the product of an ancient core dynamo. The dynamo field persisted from at least 4.25 to 3.56 billion years ago (Ga), with an intensity reaching that of the present Earth. The field then declined by at least an order of magnitude by ∼3.3 Ga. The mechanisms for sustaining such an intense and long-lived dynamo are uncertain but may include mechanical stirring by the mantle and core crystallization.


2021 ◽  
Vol 7 (32) ◽  
pp. eabi7647
Author(s):  
John A. Tarduno ◽  
Rory D. Cottrell ◽  
Kristin Lawrence ◽  
Richard K. Bono ◽  
Wentao Huang ◽  
...  

Determining the presence or absence of a past long-lived lunar magnetic field is crucial for understanding how the Moon’s interior and surface evolved. Here, we show that Apollo impact glass associated with a young 2 million–year–old crater records a strong Earth-like magnetization, providing evidence that impacts can impart intense signals to samples recovered from the Moon and other planetary bodies. Moreover, we show that silicate crystals bearing magnetic inclusions from Apollo samples formed at ∼3.9, 3.6, 3.3, and 3.2 billion years ago are capable of recording strong core dynamo–like fields but do not. Together, these data indicate that the Moon did not have a long-lived core dynamo. As a result, the Moon was not sheltered by a sustained paleomagnetosphere, and the lunar regolith should hold buried 3He, water, and other volatile resources acquired from solar winds and Earth’s magnetosphere over some 4 billion years.


Nature ◽  
1948 ◽  
Vol 161 (4095) ◽  
pp. 646-647 ◽  
Author(s):  
M. S. VALLARTA

2018 ◽  
Vol 115 (43) ◽  
pp. 10920-10925 ◽  
Author(s):  
Paolo A. Sossi ◽  
Frédéric Moynier ◽  
Kirsten van Zuilen

Terrestrial and lunar rocks share chemical and isotopic similarities in refractory elements, suggestive of a common precursor. By contrast, the marked depletion of volatile elements in lunar rocks together with their enrichment in heavy isotopes compared with Earth’s mantle suggests that the Moon underwent evaporative loss of volatiles. However, whether equilibrium prevailed during evaporation and, if so, at what conditions (temperature, pressure, and oxygen fugacity) remain unconstrained. Chromium may shed light on this question, as it has several thermodynamically stable, oxidized gas species that can distinguish between kinetic and equilibrium regimes. Here, we present high-precision Cr isotope measurements in terrestrial and lunar rocks that reveal an enrichment in the lighter isotopes of Cr in the Moon compared with Earth’s mantle by 100 ± 40 ppm per atomic mass unit. This observation is consistent with Cr partitioning into an oxygen-rich vapor phase in equilibrium with the proto-Moon, thereby stabilizing the CrO2 species that is isotopically heavy compared with CrO in a lunar melt. Temperatures of 1,600–1,800 K and oxygen fugacities near the fayalite–magnetite–quartz buffer are required to explain the elemental and isotopic difference of Cr between Earth’s mantle and the Moon. These temperatures are far lower than modeled in the aftermath of a giant impact, implying that volatile loss did not occur contemporaneously with impact but following cooling and accretion of the Moon.


2021 ◽  
Vol 55 (6) ◽  
pp. 50-55
Author(s):  
S.A. Pineguin ◽  
◽  
O.A. Dadasheva ◽  
E.I. Mednikova ◽  
O.A. Grushina ◽  
...  

Expectation of remote space missions and long-term stay and work on the Moon with the magnetic field 1,000 times weaker than on Earth sets the researchers the formidable task to investigate effects of the hypomagnetic environment on living organisms. The paper reports data about the liver and spleen development in Japanese quail embryos of various age exposed in a modeled lunar magnetic field. Retardation of hemopoiesis was observed as in the first generation embryos (F1), so in sequential embryo generations developed in the ordinary magnetic environment (F2).


2021 ◽  
Author(s):  
Marine Lasbleis

<div> <p>Growth of the solid inner core is generally considered to power the Earth's present geodynamo. Cristallisation of a solid central inner core has also been proposed to drive the lunar dynamo and to generate a magnetic field in smaller bodies. In a previous work, we estimated the compaction of planetary cores for different scenarios of growth (with or without supercooling) and different sizes of the inner core. Our main results indicated that small inner cores are unlikely to compact efficiently the liquid trapped during the first steps of the growth.</p> <p>This is especially true for small bodies for which the typical size of the core is similar to the compaction length. The light elements are thus trapped during the cristallisation, reducing the release of latent heat and of light elements. We present here a model to include the effect of an inefficient compaction in the energy budget of a planetary core and investigate the implications for the dynamo evolution in small bodies. We apply this model for the evolution of the core of the Moon. </p> </div>


2021 ◽  
Vol 27 (7) ◽  
pp. 6-17
Author(s):  
Z. Golitsyna ◽  
◽  
A. Kirdyashkin ◽  

The problem of compositional analysis of extraterrestrial crystalline rocks in the study of celestial bodies is considered. Since most of the bodies, terrestrial planets and their surrounding objects may contain clinopyroxenes, it is possible to study the temperature and pressure of rock formation in certain areas according to the state of these minerals, and the studies can be carried out identically to the geothermobarometry of Earth rocks. The paper presents the results of experimental studies of clinopyroxene compositions of the basic model system CaO-MgO-Al2O3-SiO2 in the pressure range of 12...30 kbar and temperatures of 1325...1650 °C, which can be assumed as conditions for the formation of lunar rocks. The development of the necessary experimental data obtained in terrestrial conditions will help in the future to conduct remote studies of the Moon and other celestial bodies without the need to deliver soil to Earth. The revealed clinopyroxenes can be analyzed with existing geothermometers and geobarometers obtained for different ranges of P-T conditions. The possibility of creating a new geothermobarometer based on the distribution of minals or cations in clinopyroxene specifically for lunar rocks is not excluded. The main features and possible instrumentation of the apparatus intended for the study of the lunar surface are described. The study of different areas of the lunar surface will determine where the country rocks are located most closely to the surface. Analysis of silicate components of the lunar rocks will make it possible to get closer to the solution to the problem of initial composition of the lunar mantle


Sign in / Sign up

Export Citation Format

Share Document