Stimulation of cell growth and proliferation in NIH-3T3 cells by onion and garlic oils

1986 ◽  
Vol 2 (3) ◽  
pp. 369-378 ◽  
Author(s):  
Judith T. Zelikoff ◽  
Norman M. Atkins ◽  
Sidney Belman
2006 ◽  
Vol 26 (1) ◽  
pp. 50-62 ◽  
Author(s):  
Rashmi N. Kumar ◽  
Ji Hee Ha ◽  
Rangasudhagar Radhakrishnan ◽  
Danny N. Dhanasekaran

ABSTRACT The GTPase-deficient, activated mutant of Gα12 (Gα12Q229L, or Gα12QL) induces neoplastic growth and oncogenic transformation of NIH 3T3 cells. Using microarray analysis, we have previously identified a role for platelet-derived growth factor receptor α (PDGFRα) in Gα12-mediated cell growth (R. N. Kumar et al., Cell Biochem. Biophys. 41:63-73, 2004). In the present study, we report that Gα12QL stimulates the functional expression of PDGFRα and demonstrate that the expression of PDGFRα by Gα12QL is dependent on the small GTPase Rho. Our results indicate that it is cell type independent as the transient expression of Gα12QL or the activation of Gα12-coupled receptors stimulates the expression of PDGFRα in NIH 3T3 as well as in human astrocytoma 1321N1 cells. Furthermore, we demonstrate the presence of an autocrine loop involving PDGF-A and PDGFRα in Gα12QL-transformed cells. Analysis of the functional consequences of the Gα12-PDGFRα signaling axis indicates that Gα12 stimulates the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway through PDGFR. In addition, we show that Gα12QL stimulates the phosphorylation of forkhead transcription factor FKHRL1 via AKT in a PDGFRα- and PI3K-dependent manner. Since AKT promotes cell growth by blocking the transcription of antiproliferative genes through the inhibitory phosphorylation of forkhead transcription factors, our results describe for the first time a PDGFRα-dependent signaling pathway involving PI3K-AKT-FKHRL1, regulated by Gα12QL in promoting cell growth. Consistent with this view, we demonstrate that the expression of a dominant negative mutant of PDGFRα attenuated Gα12-mediated neoplastic transformation of NIH 3T3 cells.


1999 ◽  
Vol 372 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Denise R. Cooper ◽  
James E. Watson ◽  
Niketa Patel ◽  
Philip Illingworth ◽  
Mildred Acevedo-Duncan ◽  
...  

2002 ◽  
Vol 22 (11) ◽  
pp. 3717-3728 ◽  
Author(s):  
Nicolas Dumaz ◽  
Yvonne Light ◽  
Richard Marais

ABSTRACT It is widely accepted that cyclic AMP (cAMP) can block cell growth by phosphorylating Raf-1 on serine 43 and inhibiting signaling to extracellular signal-regulated protein kinase. We show that the suppression of Raf-1 by cAMP is considerably more complex than previously reported. When cellular cAMP is elevated, Raf-1 is phosphorylated on three residues (S43, S233, and S259), which work independently to block Raf-1. Both Ras-dependent and Ras-independent processes are disrupted. However, when cAMP-insensitive versions of Raf-1 are expressed in NIH 3T3 cells, their growth is still strongly suppressed when cAMP is elevated. Thus, although Raf-1 appears to be an important cAMP target, other pathways are also targeted by cAMP, providing alternative mechanisms that lead to suppression of cell growth.


1992 ◽  
Vol 12 (9) ◽  
pp. 3903-3909
Author(s):  
C J Molloy ◽  
T P Fleming ◽  
D P Bottaro ◽  
A Cuadrado ◽  
S A Aaronson

Platelet-derived growth factor (PDGF) stimulation of NIH 3T3 cells leads to the rapid tyrosine phosphorylation of the GTPase-activating protein (GAP) and an associated 64- to 62-kDa tyrosine-phosphorylated protein (p64/62). To assess the functions of these proteins, we evaluated their phosphorylation state in normal NIH 3T3 cells as well as in cells transformed by oncogenically activated v-H-ras or overexpression of c-H-ras genes. No significant GAP tyrosine phosphorylation was observed in unstimulated cultures, while PDGF-BB induced rapid tyrosine phosphorylation of GAP in all cell lines analyzed. In NIH 3T3 cells, we found that PDGF stimulation led to the recovery of between 37 and 52% of GAP molecules by immunoprecipitation with monoclonal antiphosphotyrosine antibodies. Furthermore, PDGF exposure led to a rapid and sustained increase in the levels of p21ras bound to GTP, with kinetics similar to those observed for GAP tyrosine phosphorylation. The PDGF-induced increases in GTP-bound p21ras in NIH 3T3 cells were comparable to the steady-state level observed in serum-starved c-H-ras-overexpressing transformants, conditions in which these cells maintained high rates of DNA synthesis. These results imply that the level of p21ras activation following PDGF stimulation of NIH 3T3 cells is sufficient to support mitogenic stimulation. Addition of PDGF to c-H-ras-overexpressing cells also resulted in a rapid and sustained increase in GTP-bound p21ras. In these cells GAP, but not p64/62, showed increased tyrosine phosphorylation, with kinetics similar to those observed for increased GTP-bound p21ras. All of these findings support a role for GAP tyrosine phosphorylation in p21ras activation and mitogenic signaling.


1992 ◽  
Vol 12 (9) ◽  
pp. 3903-3909 ◽  
Author(s):  
C J Molloy ◽  
T P Fleming ◽  
D P Bottaro ◽  
A Cuadrado ◽  
S A Aaronson

Platelet-derived growth factor (PDGF) stimulation of NIH 3T3 cells leads to the rapid tyrosine phosphorylation of the GTPase-activating protein (GAP) and an associated 64- to 62-kDa tyrosine-phosphorylated protein (p64/62). To assess the functions of these proteins, we evaluated their phosphorylation state in normal NIH 3T3 cells as well as in cells transformed by oncogenically activated v-H-ras or overexpression of c-H-ras genes. No significant GAP tyrosine phosphorylation was observed in unstimulated cultures, while PDGF-BB induced rapid tyrosine phosphorylation of GAP in all cell lines analyzed. In NIH 3T3 cells, we found that PDGF stimulation led to the recovery of between 37 and 52% of GAP molecules by immunoprecipitation with monoclonal antiphosphotyrosine antibodies. Furthermore, PDGF exposure led to a rapid and sustained increase in the levels of p21ras bound to GTP, with kinetics similar to those observed for GAP tyrosine phosphorylation. The PDGF-induced increases in GTP-bound p21ras in NIH 3T3 cells were comparable to the steady-state level observed in serum-starved c-H-ras-overexpressing transformants, conditions in which these cells maintained high rates of DNA synthesis. These results imply that the level of p21ras activation following PDGF stimulation of NIH 3T3 cells is sufficient to support mitogenic stimulation. Addition of PDGF to c-H-ras-overexpressing cells also resulted in a rapid and sustained increase in GTP-bound p21ras. In these cells GAP, but not p64/62, showed increased tyrosine phosphorylation, with kinetics similar to those observed for increased GTP-bound p21ras. All of these findings support a role for GAP tyrosine phosphorylation in p21ras activation and mitogenic signaling.


FEBS Letters ◽  
1990 ◽  
Vol 269 (1) ◽  
pp. 148-152 ◽  
Author(s):  
Naohisa Oku ◽  
Kozo Kaibuchi ◽  
Yasuo Fukumoto ◽  
Yuichi Hori ◽  
Hiroyuki Fujioka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document