scholarly journals Transactivation of Platelet-Derived Growth Factor Receptor α by the GTPase-Deficient Activated Mutant of Gα12

2006 ◽  
Vol 26 (1) ◽  
pp. 50-62 ◽  
Author(s):  
Rashmi N. Kumar ◽  
Ji Hee Ha ◽  
Rangasudhagar Radhakrishnan ◽  
Danny N. Dhanasekaran

ABSTRACT The GTPase-deficient, activated mutant of Gα12 (Gα12Q229L, or Gα12QL) induces neoplastic growth and oncogenic transformation of NIH 3T3 cells. Using microarray analysis, we have previously identified a role for platelet-derived growth factor receptor α (PDGFRα) in Gα12-mediated cell growth (R. N. Kumar et al., Cell Biochem. Biophys. 41:63-73, 2004). In the present study, we report that Gα12QL stimulates the functional expression of PDGFRα and demonstrate that the expression of PDGFRα by Gα12QL is dependent on the small GTPase Rho. Our results indicate that it is cell type independent as the transient expression of Gα12QL or the activation of Gα12-coupled receptors stimulates the expression of PDGFRα in NIH 3T3 as well as in human astrocytoma 1321N1 cells. Furthermore, we demonstrate the presence of an autocrine loop involving PDGF-A and PDGFRα in Gα12QL-transformed cells. Analysis of the functional consequences of the Gα12-PDGFRα signaling axis indicates that Gα12 stimulates the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway through PDGFR. In addition, we show that Gα12QL stimulates the phosphorylation of forkhead transcription factor FKHRL1 via AKT in a PDGFRα- and PI3K-dependent manner. Since AKT promotes cell growth by blocking the transcription of antiproliferative genes through the inhibitory phosphorylation of forkhead transcription factors, our results describe for the first time a PDGFRα-dependent signaling pathway involving PI3K-AKT-FKHRL1, regulated by Gα12QL in promoting cell growth. Consistent with this view, we demonstrate that the expression of a dominant negative mutant of PDGFRα attenuated Gα12-mediated neoplastic transformation of NIH 3T3 cells.

1998 ◽  
Vol 111 (4) ◽  
pp. 469-478 ◽  
Author(s):  
A.S. Woodard ◽  
G. Garcia-Cardena ◽  
M. Leong ◽  
J.A. Madri ◽  
W.C. Sessa ◽  
...  

Integrins and growth factor receptors act synergistically to modulate cellular functions. The alphavbeta3 integrin and the platelet-derived growth factor receptor have both been shown to play a positive role in cell migration. We show here that a platelet derived growth factor-BB gradient stimulated migration of rat microvascular endothelial cells on vitronectin (9.2-fold increase compared to resting cells) in a alphavbeta3 and RGD-dependent manner. In contrast, this response was not observed on a beta1 integrin ligand, laminin; background levels of migration, in response to a platelet derived growth factor-BB gradient, were observed on this substrate or on bovine serum albumin (2.4- or 2.0-fold, respectively). Comparable results were obtained using NIH-3T3 cells. Platelet derived growth factor-BB did not change the cells' ability to adhere to vitronectin, nor did it stimulate a further increase in proliferation on vitronectin versus laminin. In addition, platelet derived growth factor-BB stimulation of NIH-3T3 cells did not alter the ability of alphavbeta3 to bind RGD immobilized on Sepharose. The alphavbeta3 integrin and the platelet derived growth factor receptor-beta associate in both microvascular endothelial cells and NIH-3T3 cells, since they coprecipitated using two different antibodies to either alphavbeta3 or to the platelet derived growth factor receptor-beta. In contrast, beta1 integrins did not coprecipitate with the platelet derived growth factor receptor-beta. These results point to a novel pathway, mediated by the synergistic activity of alphavbeta3 and the platelet derived growth factor receptor-beta, that regulates cell migration and, therefore, might play a role during neovessel formation and tissue infiltration.


1992 ◽  
Vol 12 (12) ◽  
pp. 5843-5856
Author(s):  
J Meisenhelder ◽  
T Hunter

In the course of our investigation of phospholipase C (PLC)-gamma 1 phosphorylation by using a set of anti-PLC-gamma 1 monoclonal antibodies (P.-G. Suh, S. H. Ryu, W. C. Choi, K.-Y. Lee, and S. G. Rhee, J. Biol. Chem. 263:14497-14504, 1988), we found that some of these antibodies directly recognize a 47-kDa protein. We show here that this 47-kDa protein is identical to the SH2/SH3-containing protein Nck (J. M. Lehmann, G. Riethmuller, and J. P. Johnson, Nucleic Acids Res. 18:1048, 1990). Nck was found to be constitutively phosphorylated on serine in resting NIH 3T3 cells. Platelet-derived growth factor (PDGF) treatment led to increased Nck phosphorylation on both tyrosine and serine. Nck was also found to be phosphorylated on tyrosine in epidermal growth factor (EGF)-treated A431 cells and in v-Src-transformed NIH 3T3 cells. Multiple sites of serine phosphorylation were detected in Nck from resting cells, and no novel sites were found upon PDGF or EGF treatment. A single major tyrosine phosphorylation site was found in Nck in both PDGF- and EGF-treated cells and in v-Src-transformed cells. This same tyrosine was phosphorylated in vitro by purified PDGF and EGF receptors and also by pp60c-src. We compared the phosphorylation of Nck and PLC-gamma 1 in several cell lines transformed by oncogenes with different modes of transformation. Although PLC-gamma 1 and Nck have significant amino acid identity, particularly in their SH3 regions, and both associate with growth factor receptors in a ligand-dependent manner, they were not always phosphorylated on tyrosine in a coincident manner.


1992 ◽  
Vol 12 (12) ◽  
pp. 5843-5856 ◽  
Author(s):  
J Meisenhelder ◽  
T Hunter

In the course of our investigation of phospholipase C (PLC)-gamma 1 phosphorylation by using a set of anti-PLC-gamma 1 monoclonal antibodies (P.-G. Suh, S. H. Ryu, W. C. Choi, K.-Y. Lee, and S. G. Rhee, J. Biol. Chem. 263:14497-14504, 1988), we found that some of these antibodies directly recognize a 47-kDa protein. We show here that this 47-kDa protein is identical to the SH2/SH3-containing protein Nck (J. M. Lehmann, G. Riethmuller, and J. P. Johnson, Nucleic Acids Res. 18:1048, 1990). Nck was found to be constitutively phosphorylated on serine in resting NIH 3T3 cells. Platelet-derived growth factor (PDGF) treatment led to increased Nck phosphorylation on both tyrosine and serine. Nck was also found to be phosphorylated on tyrosine in epidermal growth factor (EGF)-treated A431 cells and in v-Src-transformed NIH 3T3 cells. Multiple sites of serine phosphorylation were detected in Nck from resting cells, and no novel sites were found upon PDGF or EGF treatment. A single major tyrosine phosphorylation site was found in Nck in both PDGF- and EGF-treated cells and in v-Src-transformed cells. This same tyrosine was phosphorylated in vitro by purified PDGF and EGF receptors and also by pp60c-src. We compared the phosphorylation of Nck and PLC-gamma 1 in several cell lines transformed by oncogenes with different modes of transformation. Although PLC-gamma 1 and Nck have significant amino acid identity, particularly in their SH3 regions, and both associate with growth factor receptors in a ligand-dependent manner, they were not always phosphorylated on tyrosine in a coincident manner.


1992 ◽  
Vol 12 (2) ◽  
pp. 491-498 ◽  
Author(s):  
N Redemann ◽  
B Holzmann ◽  
T von Rüden ◽  
E F Wagner ◽  
J Schlessinger ◽  
...  

Overexpression and autocrine activation of the epidermal growth factor receptor (EGF-R) cause transformation of cultured cells and correlate with tumor progression in cancer patients. Dimerization and transphosphorylation are crucial events in the process by which receptors with tyrosine kinase activity generate normal and transforming cellular signals. Interruption of this process by inactive receptor mutants offers the potential to inhibit ligand-induced cellular responses. Using recombinant retroviruses, we have examined the effects of signalling-incompetent EGF-R mutants on the growth-promoting and transforming potential of ligand-activated, overexpressed wild-type EGF-R and the v-erbB oncogene product. Expression of a soluble extracellular EGF-R domain had little if any effect on the growth and transformation of NIH 3T3 cells by either tyrosine kinase. However, both a kinase-negative EGF-R point mutant (HERK721A) and an EGF-R lacking 533 C-terminal amino acids efficiently inhibited wild-type EGF-R-mediated, de novo DNA synthesis and cell transformation in a dose-dependent manner. Furthermore, coexpression with the v-erbBES4 oncogene product in NIH 3T3 cells resulted in transphosphorylation of the HERK721A mutant receptor and reduced soft-agar colony growth but had no effect in a focus formation assay. These results demonstrate that signalling-defective receptor tyrosine kinase mutants differentially interfere with oncogenic signals generated by either overexpressed EGF-R or the retroviral v-erbBES4 oncogene product.


1985 ◽  
Vol 127 (3) ◽  
pp. 843-848 ◽  
Author(s):  
Elisa Vicenzi ◽  
Marina Bianchi ◽  
Mario Salmona ◽  
Maria Benedetta Donati ◽  
Andreina Poggi ◽  
...  

1992 ◽  
Vol 12 (9) ◽  
pp. 3903-3909
Author(s):  
C J Molloy ◽  
T P Fleming ◽  
D P Bottaro ◽  
A Cuadrado ◽  
S A Aaronson

Platelet-derived growth factor (PDGF) stimulation of NIH 3T3 cells leads to the rapid tyrosine phosphorylation of the GTPase-activating protein (GAP) and an associated 64- to 62-kDa tyrosine-phosphorylated protein (p64/62). To assess the functions of these proteins, we evaluated their phosphorylation state in normal NIH 3T3 cells as well as in cells transformed by oncogenically activated v-H-ras or overexpression of c-H-ras genes. No significant GAP tyrosine phosphorylation was observed in unstimulated cultures, while PDGF-BB induced rapid tyrosine phosphorylation of GAP in all cell lines analyzed. In NIH 3T3 cells, we found that PDGF stimulation led to the recovery of between 37 and 52% of GAP molecules by immunoprecipitation with monoclonal antiphosphotyrosine antibodies. Furthermore, PDGF exposure led to a rapid and sustained increase in the levels of p21ras bound to GTP, with kinetics similar to those observed for GAP tyrosine phosphorylation. The PDGF-induced increases in GTP-bound p21ras in NIH 3T3 cells were comparable to the steady-state level observed in serum-starved c-H-ras-overexpressing transformants, conditions in which these cells maintained high rates of DNA synthesis. These results imply that the level of p21ras activation following PDGF stimulation of NIH 3T3 cells is sufficient to support mitogenic stimulation. Addition of PDGF to c-H-ras-overexpressing cells also resulted in a rapid and sustained increase in GTP-bound p21ras. In these cells GAP, but not p64/62, showed increased tyrosine phosphorylation, with kinetics similar to those observed for increased GTP-bound p21ras. All of these findings support a role for GAP tyrosine phosphorylation in p21ras activation and mitogenic signaling.


2000 ◽  
Vol 151 (7) ◽  
pp. 1449-1458 ◽  
Author(s):  
Mary Ann Sells ◽  
Amanda Pfaff ◽  
Jonathan Chernoff

p21-activated kinases (Paks) are effectors of the small GTPases Cdc42 and Rac, and are thought to mediate some of the cytoskeletal and transcriptional activities of these proteins. To localize activated Pak1 in cells, we developed an antibody directed against a phosphopeptide that is contained within the activation loop of Pak1. This antibody specifically recognizes the activated form of Pak1. Immunofluorescence analysis of NIH-3T3 cells coexpressing activated Cdc42 or Rac1 plus wild-type Pak1 shows that activated Pak1 accumulates at sites of focal adhesion, throughout filopodia and within the body and edges of lamellipodia. Platelet-derived growth factor stimulation of NIH-3T3 cells shows a pattern of Pak1 activation similar to that observed with Rac1. During closure of a fibroblast monolayer wound, Pak1 is rapidly activated and localizes to the leading edge of motile cells, then gradually tapers off as the wound closes. The activation of Pak1 by wounding is blocked by inhibitors of phosphatidylinositol 3-kinase, and Src family kinases, but not by an inhibitor of the epidermal growth factor receptor. These findings indicate that activated Pak1, and by extension, probably activated Cdc42 or Rac, accumulates at sites of cortical actin remodeling in motile fibroblasts.


1992 ◽  
Vol 12 (11) ◽  
pp. 5152-5158 ◽  
Author(s):  
S Rong ◽  
M Bodescot ◽  
D Blair ◽  
J Dunn ◽  
T Nakamura ◽  
...  

The met proto-oncogene is the tyrosine kinase growth factor receptor for hepatocyte growth factor/scatter factor (HGF/SF). It was previously shown that, like the oncogenic tpr-met, the mouse met proto-oncogene transforms NIH 3T3 cells. We have established NIH 3T3 cells stably expressing both human (Methu) and mouse (Metmu) met proto-oncogene products. The protein products are properly processed and appear on the cell surface. NIH 3T3 cells express endogenous mouse HGF/SF mRNA, suggesting an autocrine activation mechanism for transformation by Metmu. However, the tumor-forming activity of Methu in NIH 3T3 cells is very low compared with that of Metmu, but efficient tumorigenesis occurs when Methu and HGF/SFhu are coexpressed. These results are consistent with an autocrine transformation mechanism and suggest further that the endogenous murine factor inefficiently activates the tumorigenic potential of Methu. The tumorigenicity observed with reciprocal chimeric human and mouse receptors that exchange external ligand-binding domains supports this conclusion. We also show that HGF/SFhu expressed in NIH 3T3 cells produces tumors in nude mice.


Sign in / Sign up

Export Citation Format

Share Document