The importance of biparental care in a precocial, monogamous bird, the bar-headed goose (Anser indicus)

1990 ◽  
Vol 27 (6) ◽  
pp. 415-419 ◽  
Author(s):  
Jutta Schneider ◽  
J�rg Lamprecht
2021 ◽  
Author(s):  
Pascual LÓPEZ-LÓPEZ ◽  
Arturo M PERONA ◽  
Olga EGEA-CASAS ◽  
Jon ETXEBARRIA MORANT ◽  
Vicente URIOS

Abstract Cutting-edge technologies are extremely useful to develop new workflows in studying ecological data, particularly to understand animal behaviour and movement trajectories at the individual level. Although parental care is a well-studied phenomenon, most studies have been focused on direct observational or video recording data, as well as experimental manipulation. Therefore, what happens out of our sight still remains unknown. Using high-frequency GPS/GSM dataloggers and tri-axial accelerometers we monitored 25 Bonelli’s eagles (Aquila fasciata) during the breeding season to understand parental activities from a broader perspective. We used recursive data, measured as number of visits and residence time, to reveal nest attendance patterns of biparental care with role specialization between sexes. Accelerometry data interpreted as the Overall Dynamic Body Acceleration, a proxy of energy expenditure, showed strong differences in parental effort throughout the breeding season and between sexes. Thereby, males increased substantially their energetic requirements, due to the increased workload, while females spent most of the time on the nest. Furthermore, during critical phases of the breeding season, a low percentage of suitable hunting spots in eagles’ territories led them to increase their ranging behaviour in order to find food, with important consequences in energy consumption and mortality risk. Our results highlight the crucial role of males in raptor species exhibiting biparental care. Finally, we exemplify how biologging technologies are an adequate and objective method to study parental care in raptors as well as to get deeper insight into breeding ecology of birds in general.


Primates ◽  
2015 ◽  
Vol 57 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Andrea Spence-Aizenberg ◽  
Anthony Di Fiore ◽  
Eduardo Fernandez-Duque

1986 ◽  
Vol 250 (3) ◽  
pp. R499-R504 ◽  
Author(s):  
F. M. Faraci ◽  
M. R. Fedde

To investigate mechanisms that may allow birds to tolerate extreme high altitude (hypocapnic hypoxia), we examined the effects of severe hypocapnia and moderate hypercapnia on regional blood flow in bar-headed geese (Anser indicus), a species that flies at altitudes up to 9,000 m. Cerebral, coronary, and pectoral muscle blood flows were measured using radioactive microspheres, while arterial CO2 tension (PaCO2) was varied from 7 to 62 Torr in awake normoxic birds. Arterial blood pressure was not affected by hypocapnia but increased slightly during hypercapnia. Heart rate did not change during alterations in PaCO2. Severe hypocapnia did not significantly alter cerebral, coronary, or pectoral muscle blood flow. Hypercapnia markedly increased cerebral and coronary blood flow, but pectoral muscle blood flow was unaffected. The lack of a blood flow reduction during severe hypocapnia may represent an important adaptation in these birds, enabling them to increase O2 delivery to the heart and brain at extreme altitude despite the presence of a very low PaCO2.


Animals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 182 ◽  
Author(s):  
Ruobing Zheng ◽  
Lacy Smith ◽  
Diann Prosser ◽  
John Takekawa ◽  
Scott Newman ◽  
...  

The Bar-headed Goose is the only true goose species or Anserinae to migrate solely within the Central Asian Flyway, and thus, it is an ideal species for observing the effects of both land use and climate change throughout the flyway. In this paper, we investigate the home range, movement pattern, and habitat selection of Bar-headed Geese (Anser indicus) during the breeding season at Qinghai Lake, which is one of their largest breeding areas and a major migration staging area in the flyway. We identified several areas used by the geese during the breeding season along the shoreline of Qinghai Lake and found that most geese had more than one core use area and daily movements that provided insight into their breeding activity. We also observed the intensive use of specific wetlands and habitats near Qinghai Lake. These data provide interesting insights into the movement ecology of this important species and also provide critical information for managers seeking to understand and respond to conservation concerns threatening Bar-headed Geese, such as landscape and habitat changes.


2016 ◽  
Vol 46 (4) ◽  
pp. 433-438 ◽  
Author(s):  
Douglas da Cruz MATTOS ◽  
Rafaela SCRENCI-RIBEIRO ◽  
Leonardo Demier CARDOSO ◽  
Manuel Vazquez Vidal JUNIOR

ABSTRACT The blue discus (Symphysodon aequifasciatus) is often sold for ornamental purposes. It is a neotropical cichlid from South America, which is native to the rivers of the Amazon basin of Brazil, Peru and Colombia. The purpose of this study was to characterize the reproductive behavior of S. aequifasciatus and identify features that can later be used by breeders to facilitate the handling and reproduction of this species in captivity. The experiment was divided into two stages: the first dealt with partner selection and couple formation to observe the behaviors of territoriality, pursuing, fleeing, biting, stay, protecting and cleaning of the substrate. The second stage documented mating behavior, nesting and parental care, to observe vibration, spawning, permanence with the offspring, aeration of eggs, cleaning of spawning, color change and shift-taking in parental care. The results of the study allowed identifying disputes for and establishment of territory, as well as the selection and cleaning of the substrate for spawning performed by both sexes. The parental care was observed from spawning in the substrate until the care for the larvae. It was found that the reproductive success of this species is closely linked to biparental care observed during the entire reproductive process and early stages of the hatchings.


Sign in / Sign up

Export Citation Format

Share Document