Radiation exposure in the environment of patients after application of radiopharmaceuticals

2008 ◽  
Vol 47 (06) ◽  
pp. 267-274 ◽  
Author(s):  
F. Boldt ◽  
C. Kobe ◽  
W. Eschner ◽  
H. Schicha ◽  
F. Sudbrock

Summary Aim: After application of radiopharmaceuticals the patient becomes a radioactive source which leads to radiation exposure in the proximity. The photon dose rates after administration of different radiopharmaceuticals used in diagnostic nuclear medicine were measured at several distances and different time intervals. These data are of importance for estimating the exposure of technologists and members of the public. Patients, method: In this study dose rates were measured for 67 patients after application of the following radiopharmaceuticals: 99mTc-HDP as well as 99mTcpertechnetate, 18F-fluorodeoxyglucose, 111In-Octreotid and Zevalin® and 123I-mIBG in addition to 123I-NaI. The dose rates were measured immediately following application at six different distances to the patient. After two hours the measurements were repeated and – whenever possible – after 24 hours and seven days. Results: Immediately following application the highest dose rates were below 1 mSv / h: with a maximum at 780 μSv/h for 18F (370 MBq), 250 μSv/h for 99mTc (700 MBq), 150 μSv/h for 111In (185 MBq) and 132 μSv/ h for 123I (370 MBq). At a distance of 0.5 m the values decrease significantly by an order of magnitude. Two hours after application the values are diminished to 1/3 (99mTc, 18F), to nearly ½ (123I) but remain in the same order of magnitude for the longer-lived 111In radiopharmaceuticals. Conclusion: For greater distances the doses remain below the limits outlined in the national legislation.

2009 ◽  
Vol 48 (01) ◽  
pp. 17-25 ◽  
Author(s):  
F. Boldt ◽  
C. Kobe ◽  
J. Hammes ◽  
W. Eschner ◽  
H. Schicha ◽  
...  

Summary Aim: After therapeutical application of radionuclides the patient has to be regarded as a radioactive source. The radiation exposure differs from diagnostic nuclear medicine due to the amount of radioactivity and due to β-radiation. Measurements of photon dose rates were carried out and estimates of β-radiation outside the patient using Monte-Carlo methods. Calculations of maximum β-ranges in tissue were also performed. Detailed knowledge of the radiation exposure close to the patient is of major importance with respect to radiation protection of the staff. Method: Photon dose rates for 32 patients were determined after treatment with [131I]NaI and [131I]meta-iodobenzylguanidin, [32P]Na2HPO4, [90Y]Zevalin and [153Sm]EDTMP. Readings were taken immediately after application at eight distances. Results: For therapies with 131I photon dose rates amount to 2 mSv·h-1·GBq-1 close to the patient. Taking the typical activities of 3.7 GBq for thyroid carcinoma and up to 11 GBq for mIBG therapies into account this leads to a considerable radiation exposure of approximately 7.5 mSv/h and 20 mSv/h, respectively. At a distance of 2 m the dose rates fall to 1/100 compared to the vicinity. For 153Sm the maximum of 100 μSv·h-1·GBq-1 is significantly lower compared to therapies using radioiodine. After application of 32P or 90Y all photon dose rates are lower (>10 μSv·h-1·GBq-1) but in both cases high energy β-particles associated with high maximum ranges exceeding 1 cm in tissue have to be considered. Conclusion: The remarkable difference of the dose rates in the vicinity of the radioactive patient compared to readings at 2 m distance underlines the major importance of the distance for radiation protection. After application of nuclides emitting high energy β-particles their contribution outside the patient should be considered. For typical procedures in the patient's vicinty the radiation exposure of the personnel remains below the annual limit of 20 mSv.


2018 ◽  
Vol 24 (3) ◽  
pp. 133-136 ◽  
Author(s):  
Krisanat Chuamsaamarkkee ◽  
Putthiporn Charoenphun ◽  
Natthaporn Kamwang ◽  
Sahakan Monthonwattana ◽  
Wirote Changmuang ◽  
...  

Abstract Background: 131I-metaiodobenzylguanidine (mIBG) offers an effectively targeted radionuclide therapy in pediatric patients. According to radiation protection authority in our country, the patient treated with high-dose (>1100 MBq) radioiodine is recommended to stay in the hospital. Hence, this study intends to measure the radiation exposure in nonlead-lined treatment room installing with portable lead shields located in general pediatric ward and surrounding areas. In addition, this study also aims to measure the radiation exposure to the family caregiver in pediatric patients received high dose 131I-mIBG. Methods: Environmental OSL (optically stimulated luminescence) monitoring devices (InLight®, Al2O3:C) were prepared and calibrated by Thailand Institute of Nuclear Technology (TINT). Twenty-five set of OSLs were placed in and surrounded the treatment room. Dose to family caregiver was recorded by digital semiconductor dosimeter (ALOKA PDM-112) also calibrated by TINT. The measurement was carried for four pediatric patients treated with 131IMIBG (activity 3700 – 5500 MBq). Results: The ambient doses equivalent and the dose rate were analyzed, the limit of 10 and 0.5 μSv/h are accepted for radiation worker and member of the public, respectively. The dose rate around the patient bed and toilet were high as expected. Dose rates at the wall of adjacent room and corridor were slightly greater than the public limit (range 1.82 to 4.48 μSv/h). Remarkably, the dose rates at caregiver chair (outside the shielding) were exceeded the limits (30.57 ± 5.69 μSv/h). Consequently, this was correlated with high personal dose equivalent to family caregivers which listed as 175, 1632, 6760 and 7433 μSv for the patient age of 15, 5, 1 and 1 year respectively. Conclusion: These radiation monitoring data provided the important information to manage radiation protection and aware of radiation exposure when using non-lead-lined treatment room in general pediatric ward.


2017 ◽  
Vol 179 (2) ◽  
pp. 151-157
Author(s):  
Faraj Tabeie ◽  
Parisa Honari ◽  
Isa Neshandar Asli ◽  
Mahasti Amoei ◽  
Mohammad Eftekhari ◽  
...  

2013 ◽  
Vol 5 (1) ◽  
pp. 37-40
Author(s):  
Kamila Afroj Quadir ◽  
Nurjahan Khatun ◽  
Md Ashraful Hoque ◽  
Aleya Begum

A Hot-Lab is the major source of radiation exposure by medical technicians in a nuclear medicine set up. A table top bench shield is used to reduce this exposure which consists of a lead base and a lead wall in the bottom part while a viewing window is provided in the top part through the use of thick glass or leaded glass. In our laboratory, a home-made shield was used earlier which incorporated a 254mm ordinary glass window in the top and a thick lead wall at the bottom part. Recently a commercial bench shield was procured that uses a lighter lead glass window for better viewing. This lead glass gives an equivalent lead thickness of 2.2 mm. The present work was taken up to study the changes in the radiation exposure to nuclear medicine technicians due to this change in the bench shield. The effective doses received by two technicians were 0.937 mSv and 1.098 mSv respectively when they worked for two months using the old table top bench shield. This dose came down substantially to 0.292 mSv and 0.187 mSv respectively, when they used the new table top bench shield for the same period of time. Side by side, the radiation reaching the outer surfaces of the glass shield and the lead wall were measured due to a radiation source placed at 0mm, 10mm and 20mm from the respective inner surfaces. For the lead shield the dose rates were not much different between the two models, but for the glass window, the commercial one gave much reduced dose rate. Although the dosage was higher in the indigenously made device, the duty schedules of the technicians were rotated so that none received dosage greater than safe limits over a full year. DOI: http://dx.doi.org/10.3329/bjmp.v5i1.14669 Bangladesh Journal of Medical Physics Vol.5 No.1 2012 37-40


1982 ◽  
Vol 21 (03) ◽  
pp. 85-91 ◽  
Author(s):  
R. Poppitz

Um die Strahlenexposition und das Strahlenrisiko für die Bevölkerung durch die nuklearmedizinische Diagnostik in Bulgarien zu ermitteln, wurde eine Erhebung für das Jahr 1980 über die Arten und Anzahl der Applikationen von Radiopharmaka, über die verwendeten Aktivitäten und über die Geschlechts- und Altersverteilung der untersuchten Patienten durchgeführt. Die Gesamtzahl diagnostischer in vivo Applikationen betrug 116418 (davon 40,5% bei Männern und 59,5% bei Frauen), d.h. 13,1 Applikationen per 1000 Einwohner. Die applizierte Gesamtaktivität aller 44 verwendeter Radiopharmaka betrug ca. 2,1 TBq (56 Ci). Die Geschlechts- und Altersverteilung der untersuchten Patienten war ähnlich jener in anderen Ländern: nur 17,4% aller Patienten waren im reproduktionsfähigen Alter, 52,7% waren über 45 Jahre alt. Im Vergleich zu anderen entwickelten Ländern war in Bulgarien im Jahr 1980 der Anteil der 131J-Jodid-Untersuchungen verhältnismäßig hoch.


2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


2020 ◽  
Vol 1497 ◽  
pp. 012026
Author(s):  
A Norhayati ◽  
M S Suzilawati ◽  
Z Nur Khairunisa ◽  
Y T L Raymond ◽  
A Azimawati

Author(s):  
An Aerts ◽  
Uta Eberlein ◽  
Sören Holm ◽  
Roland Hustinx ◽  
Mark Konijnenberg ◽  
...  

Executive SummaryWith an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.


Sign in / Sign up

Export Citation Format

Share Document