The ?-tubulin gene family evolution in the Drosophila montium subgroup of the melanogaster species group

1995 ◽  
Vol 41 (3) ◽  
Author(s):  
Elena Drosopoulou ◽  
ZachariasG. Scouras
Genome ◽  
1998 ◽  
Vol 41 (4) ◽  
pp. 504-509 ◽  
Author(s):  
Elena Drosopoulou ◽  
Zacharias G Scouras

The α 1-, α 2-, α 3-, and α 4-tubulin genes have been mapped by in situ hybridization to the polytene chromosomes of five species representative of the Drosophila montium subgroup geographical distribution. A lambda phage clone containing α 1-tubulin specific sequences was isolated from a genomic DNA library of Drosophila auraria and its restriction endonuclease pattern is presented. Both well-characterized heterologous and homologous probes were used to assess orthogonality of gene members between species groups. The in situ hybridization pattern observed in all species studied is consistent with that of Drosophila melanogaster, since α 1-, α 2-, and α 3-tubulin genes are located on the same polytene arm, and the α 4-tubulin gene is found on a different arm. Cross-hybridization was observed among α 1-, α 2-, and α 3-tubulin specific sequences in all species studied, using either heterologous or homologous probes. However, unlike D. melanogaster, in all montium species studied, both α 1- and α 3-tubulin specific probes hybridize to the same polytene band, indicating a clustered organization of the above genes. The chromosomal organization of this gene family would suggest that taxa within the montium subgroup are closer to their common ancestor than are the taxa in the melanogaster species group. A mode of evolution for this gene family in Drosophila is proposed. Key words: α -tubulin genes, evolution, gene cluster, gene dispersion, Drosophila montium subgroup.


Genome ◽  
2002 ◽  
Vol 45 (3) ◽  
pp. 604-607 ◽  
Author(s):  
Elena Drosopoulou ◽  
Karin Wiebauer ◽  
Minas Yiangou ◽  
Penelope Mavragani-Tsipidou ◽  
Horst Domdey ◽  
...  

Genomic libraries were constructed from three Drosophila species, namely Drosophila auraria, Drosophila serrata, and Drosophila kikkawai, belonging to the Drosophila montium subgroup of the Drosophila melanogaster species group. Clones containing β-tubulin specific sequences were isolated, characterized by restriction endonuclease digestions and Southern hybridizations, and mapped by in situ hybridization on the polytene chromosomes of the species studied. The distribution of the β-tubulin loci was found to be similar in D. montium species and D. melanogaster.Key words: genomic clones, β-tubulin, gene family, evolution, Drosophila montium subgroup.


Genome ◽  
1998 ◽  
Vol 41 (4) ◽  
pp. 504-509
Author(s):  
Elena Drosopoulou ◽  
Zacharias G. Scouras

Author(s):  
Andrew W Legan ◽  
Christopher M Jernigan ◽  
Sara E Miller ◽  
Matthieu F Fuchs ◽  
Michael J Sheehan

Abstract Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here we describe odorant receptor gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (d  N/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Peng Jin ◽  
Shiqi Gao ◽  
Long He ◽  
Miaoze Xu ◽  
Tianye Zhang ◽  
...  

Histone acetylation is a dynamic modification process co-regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HDACs play vital roles in abiotic or biotic stress responses, their members in Triticumaestivum and their response to plant viruses remain unknown. Here, we identified and characterized 49 T. aestivumHDACs (TaHDACs) at the whole-genome level. Based on phylogenetic analyses, TaHDACs could be divided into 5 clades, and their protein spatial structure was integral and conserved. Chromosomal location and synteny analyses showed that TaHDACs were widely distributed on wheat chromosomes, and gene duplication has accelerated the TaHDAC gene family evolution. The cis-acting element analysis indicated that TaHDACs were involved in hormone response, light response, abiotic stress, growth, and development. Heatmaps analysis of RNA-sequencing data showed that TaHDAC genes were involved in biotic or abiotic stress response. Selected TaHDACs were differentially expressed in diverse tissues or under varying temperature conditions. All selected TaHDACs were significantly upregulated following infection with the barley stripe mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV), and wheat yellow mosaic virus (WYMV), suggesting their involvement in response to viral infections. Furthermore, TaSRT1-silenced contributed to increasing wheat resistance against CWMV infection. In summary, these findings could help deepen the understanding of the structure and characteristics of the HDAC gene family in wheat and lay the foundation for exploring the function of TaHDACs in plants resistant to viral infections.


2019 ◽  
Vol 55 (1) ◽  
pp. 100-112 ◽  
Author(s):  
Yuxin Hu ◽  
Weiyue Xing ◽  
Huiyin Song ◽  
Zhengyu Hu ◽  
Guoxiang Liu

2021 ◽  
Author(s):  
Kim Vertacnik ◽  
Danielle Herrig ◽  
R Keating Godfrey ◽  
Tom Hill ◽  
Scott Geib ◽  
...  

A central goal in evolutionary biology is to determine the predictability of adaptive genetic changes. Despite many documented cases of convergent evolution at individual loci, little is known about the repeatability of gene family expansions and contractions. To address this void, we examined gene family evolution in the redheaded pine sawfly Neodiprion lecontei, a non-eusocial hymenopteran and exemplar of a pine-specialized lineage evolved from angiosperm-feeding ancestors. After assembling and annotating a draft genome, we manually annotated multiple gene families with chemosensory, detoxification, or immunity functions and characterized their genomic distributions and evolutionary history. Our results suggest that expansions of bitter gustatory receptor (GR), clan 3 cytochrome P450 (CYP3), and antimicrobial peptide (AMP) subfamilies may have contributed to pine adaptation. By contrast, there was no evidence of recent gene family contraction via pseudogenization. Next, we compared the number of genes in these same families across insect taxa that vary in diet, dietary specialization, and social behavior. In Hymenoptera, herbivory was associated with large GR and small olfactory receptor (OR) families, eusociality was associated with large OR and small AMP families, and--unlike investigations among more closely related taxa--ecological specialization was not related to gene family size. Overall, our results suggest that gene families that mediate ecological interactions may expand and contract predictably in response to particular selection pressures, however, the ecological drivers and temporal pace of gene gain and loss likely varies considerably across gene families.


Sign in / Sign up

Export Citation Format

Share Document