Isolation, characterization, and localization of β-tubulin genomic clones of three Drosophila montium subgroup species

Genome ◽  
2002 ◽  
Vol 45 (3) ◽  
pp. 604-607 ◽  
Author(s):  
Elena Drosopoulou ◽  
Karin Wiebauer ◽  
Minas Yiangou ◽  
Penelope Mavragani-Tsipidou ◽  
Horst Domdey ◽  
...  

Genomic libraries were constructed from three Drosophila species, namely Drosophila auraria, Drosophila serrata, and Drosophila kikkawai, belonging to the Drosophila montium subgroup of the Drosophila melanogaster species group. Clones containing β-tubulin specific sequences were isolated, characterized by restriction endonuclease digestions and Southern hybridizations, and mapped by in situ hybridization on the polytene chromosomes of the species studied. The distribution of the β-tubulin loci was found to be similar in D. montium species and D. melanogaster.Key words: genomic clones, β-tubulin, gene family, evolution, Drosophila montium subgroup.

Genome ◽  
1998 ◽  
Vol 41 (4) ◽  
pp. 504-509 ◽  
Author(s):  
Elena Drosopoulou ◽  
Zacharias G Scouras

The α 1-, α 2-, α 3-, and α 4-tubulin genes have been mapped by in situ hybridization to the polytene chromosomes of five species representative of the Drosophila montium subgroup geographical distribution. A lambda phage clone containing α 1-tubulin specific sequences was isolated from a genomic DNA library of Drosophila auraria and its restriction endonuclease pattern is presented. Both well-characterized heterologous and homologous probes were used to assess orthogonality of gene members between species groups. The in situ hybridization pattern observed in all species studied is consistent with that of Drosophila melanogaster, since α 1-, α 2-, and α 3-tubulin genes are located on the same polytene arm, and the α 4-tubulin gene is found on a different arm. Cross-hybridization was observed among α 1-, α 2-, and α 3-tubulin specific sequences in all species studied, using either heterologous or homologous probes. However, unlike D. melanogaster, in all montium species studied, both α 1- and α 3-tubulin specific probes hybridize to the same polytene band, indicating a clustered organization of the above genes. The chromosomal organization of this gene family would suggest that taxa within the montium subgroup are closer to their common ancestor than are the taxa in the melanogaster species group. A mode of evolution for this gene family in Drosophila is proposed. Key words: α -tubulin genes, evolution, gene cluster, gene dispersion, Drosophila montium subgroup.


Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 281-295
Author(s):  
José María ◽  
Carmen Segarra ◽  
Alfredo Ruiz

Thirty-three DNA clones containing protein-coding genes have been used for in situ hybridization to the polytene chromosomes of two Drosophila repleta group species, D. repleta and D. buzzatii. Twenty-six clones gave positive results allowing the precise localization of 26 genes and the tentative identification of another nine. The results were fully consistent with the currently accepted chromosomal homologies and in no case was evidence for reciprocal translocations or pericentric inversions found. Most of the genes mapped to chromosomes 2 and 4 that are homologous, respectively, to chromosome arms 3R and 3L of D. melanogaster (Muller's elements E and D). The comparison of the molecular organization of these two elements between D. melanogaster and D. repleta (two species that belong to different subgenera and diverged some 62 million years ago) showed an extensive reorganization via paracentric inversions. Using a maximum likelihood procedure, we estimated that 130 paracentric inversions have become fixed in element E after the divergence of the two lineages. Therefore, the evolution rate for element E is approximately one inversion per million years. This value is comparable to previous estimates of the rate of evolution of chromosome X and yields an estimate of 4.5 inversions per million years for the whole Drosophila genome.


Genome ◽  
2014 ◽  
Vol 57 (10) ◽  
pp. 573-576 ◽  
Author(s):  
Elena Drosopoulou ◽  
Ifigeneia Nakou ◽  
Penelope Mavragani-Tsipidou

Four homologous and five heterologous gene-specific sequences have been mapped by in situ hybridization on the salivary gland polytene chromosomes of the olive fruit fly, Bactrocera oleae. The nine genes were dispersed on four of the five autosomal chromosomes, thus enriching the available set of chromosome landmarks for this major agricultural pest. Present data further supports the proposed chromosome homologies among B. oleae, Ceratitis capitata, and Drosophila melanogaster and the idea of the conservation of chromosomal element identity throughout dipteran evolution.


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 647-656
Author(s):  
William B Eggleston ◽  
Nac R Rim ◽  
Johng K Lim

Abstract The structure of chromosomal inversions mediated by hobo transposable elements in the Uc-1 X chromosome was investigated using cytogenetic and molecular methods. Uc-1 contains a phenotypically silent hobo element inserted in an intron of the Notch locus. Cytological screening identified six independent Notch mutations resulting from chromosomal inversions with one breakpoint at cytological position 3C7, the location of Notch. In situ hybridization to salivary gland polytene chromosomes determined that both ends of each inversion contained hobo and Notch sequences. Southern blot analyses showed that both breakpoints in each inversion had hobo-Notch junction fragments indistinguishable in structure from those present in the Uc-1 X chromosome prior to the rearrangements. Polymerase chain reaction amplification of the 12 hobo-Notch junction fragments in the six inversions, followed by DNA sequence analysis, determined that each was identical to one of the two hobo-Notch junctions present in Uc-1. These results are consistent with a model in which hobo-mediated inversions result from homologous pairing and recombination between a pair of hobo elements in reverse orientation.


Genetics ◽  
1983 ◽  
Vol 103 (3) ◽  
pp. 465-482
Author(s):  
Hampton L Carson

ABSTRACT Of 103 picture-winged Drosophila species endemic to the high Hawaiian islands, all but three are endemic to single islands or island complexes. They are presumed to have evolved in situ on each island. The banding pattern sequences of the five major polytene chromosomes of these species have been mapped to a single set of Standard sequences. Sequential variation among these chromosomes is due to 213 paracentric inversions. An atlas of their break points is provided. Geographical, morphological and behavioral data may be used to supplement the cytological information in tracing ancestry. Starting at the newer end of the archipelago, the 26 species of the Island of Hawaii (less than 700,000 years old) are inferred to have been derived from 19 founders, 15 from the Maui complex, three from Oahu and one from Kauai. The existence of 40 Maui complex species is explicable as resulting from 12 founders, ten from Oahu and two from Kauai. The 29 Oahu species can be explained by 12 founder events, five from Kauai and seven from Maui complex (summary in Figure 5). Although the ancestry of two Kauai species can be traced to newer islands, the ten remaining ones on this island (age about 5.6 million years) are apparently ancient elements in the fauna, relating ultimately to Palearctic continental sources.


Genome ◽  
2010 ◽  
Vol 53 (10) ◽  
pp. 769-777 ◽  
Author(s):  
Melanie Mehes-Smith ◽  
Paul Michael ◽  
Kabwe Nkongolo

Genome organization in the family Pinaceae is complex and largely unknown. The main purpose of the present study was to develop and physically map species-diagnostic and species-specific molecular markers in pine and spruce. Five RAPD (random amplified polymorphic DNA) and one ISSR (inter-simple sequence repeat) species-diagnostic or species-specific markers for Picea mariana , Picea rubens , Pinus strobus , or Pinus monticola were identified, cloned, and sequenced. In situ hybridization of these sequences to spruce and pine chromosomes showed the sequences to be present in high copy number and evenly distributed throughout the genome. The analysis of centromeric and telomeric regions revealed the absence of significant clustering of species-diagnostic and species-specific sequences in all the chromosomes of the four species studied. Both RAPD and ISSR markers showed similar patterns.


1997 ◽  
Vol 273 (1) ◽  
pp. C257-C265 ◽  
Author(s):  
A. Ruknudin ◽  
C. Valdivia ◽  
P. Kofuji ◽  
W. J. Lederer ◽  
D. H. Schulze

cDNAs for the Na+/Ca2+ exchanger from Drosophila melanogaster (Dmel/Nck) have been cloned by homology screening using the human heart Na+/Ca2+ exchanger cDNA. The overall deduced protein structure for Dmel/Nck is similar to that of mammalian Na+/Ca2+ exchanger genes NCX1 and NCX2, having six hydrophobic regions in the amino terminus separated from six at the carboxy-terminal end by a large intracellular loop. Sequence comparison of the Drosophila exchanger cDNAs with NCX1 and NCX2 Na+/Ca2+ exchangers are approximately 46% identical at the deduced amino acid level. Consensus phosphorylation sites for both protein kinase C and protein kinase A are present on the intracellular loop region of the Dmel/Nck. Alternative splicing for the Dmel/Nck gene is suggested in the same intracellular loop region as demonstrated for NCX1. Functionally, the Drosophila Na+/ Ca2+ exchanger expressed in oocytes differs from expressed mammalian NCX1 with regard to Ca2+ transport in Ca2+/ Ca2+ exchange and the effect of monovalent-dependent Ca2+/ Ca2+ exchange. The Dmel/Nck gene maps to chromosome 3 (93A-B) using in situ hybridization to polytene chromosomes, the same position as the Na(+)-K(+)-ATPase, a related transporter. We conclude that, although extracellular Na+ concentration-dependent Ca2+ transport is subserved by both human and Drosophila Na+/Ca2+ exchangers, there are clear and important differences in the transporters, which should be useful in deducing how the Na+/Ca2+ exchanger protein function depends on its structure.


Sign in / Sign up

Export Citation Format

Share Document