The PIT method: an automated in vitro technique for drug toxicity testing

1987 ◽  
Vol 5 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Rob van Lambalgen ◽  
Peter Lelieveld
RSC Advances ◽  
2018 ◽  
Vol 8 (65) ◽  
pp. 36987-36998 ◽  
Author(s):  
Shengli Mi ◽  
Baihan Li ◽  
Xiaoman Yi ◽  
Yuanyuan Xu ◽  
Zhichang Du ◽  
...  

Liver-on-chip, due to its precision and low cost for constructing in vitro models, has tremendous potential for drug toxicity testing and pathological studies.


Author(s):  
Eneko Madorran ◽  
Andraž Stožer ◽  
Sebastjan Bevc ◽  
Uroš Maver

The Centers for Disease Control and Prevention (CDC) provides extensive data that indicate our need for drugs to maintain human population health. Despite the substantial availability of drugs on the market, many patients lack specific drugs. New drugs are required to tackle this issue. Moreover, we need more reliable models for testing drug toxicity, as too many drug approval failures occur with the current models. This article briefly describes various approaches of the currently used models for toxicity screening, to justify the selection of in vitro cell-based models. Cell-based toxicity models have the best potential to reliably predict drug toxicity in humans, as they are developed using the cells of the target organism. However, currently, a large gap exists between in vitro cell-based approach to toxicity testing and the clinical approach, which may be contributing to drug approval failures. We propose improvements to in vitro cell-based toxicity models, which is often an insight approach, to better match this approach with the clinical homeostatic approach. This should enable a more accurate comparison of data between the preclinical as well as clinical models and provide a more comprehensive understanding of human physiology and biological effects of drugs.


1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 103-116
Author(s):  
Sven Hellberg ◽  
Lennart Eriksson ◽  
Jörgen Jonsson ◽  
Fredrik Lindgren ◽  
Michael Sjöström ◽  
...  

Estimating the toxicity to humans of chemicals by testing on human subjects is not considered to be ethically acceptable, and toxicity testing on laboratory animals is also questionable. Therefore, there is a need for alternative methods that will give estimates of various aspects of human toxicity. Batteries of in vitro tests, together with physicochemical and toxicokinetic data, analysed by efficient data analytical methods, may enable analogy models to be constructed that can predict human toxicity. It may be possible to model non-specific toxicity relating to lipophilicity, or basal cytotoxicity, for a series of diverse compounds with large variation in chemical structure and physicochemical properties. However, local models for a series of similar compounds are generally expected to be more accurate, as well as being capable of modelling more-specific interactions. Analogy models for the prediction of human toxicity are discussed and exemplified with physicochemical and cytotoxicity data from the first ten chemicals in the multicenter evaluation of in vitro cytotoxicity (MEIC) project.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1929
Author(s):  
Tereza Cervena ◽  
Andrea Rossnerova ◽  
Tana Zavodna ◽  
Jitka Sikorova ◽  
Kristyna Vrbova ◽  
...  

The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.


2021 ◽  
Vol 5 ◽  
pp. 239784732110222
Author(s):  
David Thorne ◽  
Roman Wieczorek ◽  
Toshiro Fukushima ◽  
Han-Jae Shin ◽  
Robert Leverette ◽  
...  

During a Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA) meeting, the in vitro toxicity testing Sub-Group (IVT SG) met to discuss the evolving field of aerosol exposure research. Given the diversity of exposure parameters and biological endpoints being used, it was considered a high priority to investigate and contextualise the responses obtained. This is particularly driven by the inability to compare between studies on different exposure systems due to user preferences and protocol differences. Twelve global tobacco and contract research companies met to discuss this topic and formulate an aligned approach on how this diverging field of research could be appropriately compared. Something that is becoming increasingly important, especially in the light of more focused regulatory scrutiny. A detailed and comprehensive survey was conducted on over 40 parameters ranging from aerosol generation, dilution and data analysis across eight geographically independent laboratories. The survey results emphasise the diversity of in vitro exposure parameters and methodologies employed across the IVT SG and highlighted pockets of harmonisation. For example, many of the biological protocol parameters are consistent across the Sub-Group. However, variables such as cell type and exposure time remain largely inconsistent. The next steps for this work will be to map parameters and system data against biological findings and investigate whether the observed inconsistencies translate into increased biological variability. The results from the survey provide improved awareness of parameters and nuances, that may be of substantial benefit to scientists in intersecting fields and in the development of harmonised approaches.


Author(s):  
Danlei Wang ◽  
Maartje H. Rietdijk ◽  
Lenny Kamelia ◽  
Peter J. Boogaard ◽  
Ivonne M. C. M. Rietjens

AbstractDevelopmental toxicity testing is an animal-intensive endpoints in toxicity testing and calls for animal-free alternatives. Previous studies showed the applicability of an in vitro–in silico approach for predicting developmental toxicity of a range of compounds, based on data from the mouse embryonic stem cell test (EST) combined with physiologically based kinetic (PBK) modelling facilitated reverse dosimetry. In the current study, the use of this approach for predicting developmental toxicity of polycyclic aromatic hydrocarbons (PAHs) was evaluated, using benzo[a]pyrene (BaP) as a model compound. A rat PBK model of BaP was developed to simulate the kinetics of its main metabolite 3-hydroxybenzo[a]pyrene (3-OHBaP), shown previously to be responsible for the developmental toxicity of BaP. Comparison to in vivo kinetic data showed that the model adequately predicted BaP and 3-OHBaP blood concentrations in the rat. Using this PBK model and reverse dosimetry, a concentration–response curve for 3-OHBaP obtained in the EST was translated into an in vivo dose–response curve for developmental toxicity of BaP in rats upon single or repeated dose exposure. The predicted half maximal effect doses (ED50) amounted to 67 and 45 mg/kg bw being comparable to the ED50 derived from the in vivo dose–response data reported for BaP in the literature, of 29 mg/kg bw. The present study provides a proof of principle of applying this in vitro–in silico approach for evaluating developmental toxicity of BaP and may provide a promising strategy for predicting the developmental toxicity of related PAHs, without the need for extensive animal testing.


1995 ◽  
Vol 23 (4) ◽  
pp. 491-496
Author(s):  
Hanna Tähti ◽  
Leila Vaalavirta ◽  
Tarja Toimela

— There are several hundred industrial chemicals with neurotoxic potential. The neurotoxic risks of most of these chemicals are unknown. Additional methods are needed to assess the risks more effectively and to elucidate the mechanisms of neurotoxicity more accurately than is possible with the conventional methods. This paper deals with general tasks concerning the use of in vitro models in the evaluation of neurotoxic risks. It is based on our previous studies with various in vitro models and on recent literature. The induction of glial fibrillary acidic protein in astrocyte cultures after treatment with known neurotoxicants (mercury compounds and aluminium) is discussed in more detail as an important response which can be detected in vitro. When used appropriately with in vivo tests and with previous toxicological data, in vitro neurotoxicity testing considerably improves risk assessment. The incorporation of in vitro tests into the early stages of risk evaluation can reduce the number of animals used in routine toxicity testing, by identifying chemicals with high neurotoxic potential.


Sign in / Sign up

Export Citation Format

Share Document