Circadian rhythms of indoleamines and serotonin N-acetyltransferase activity in the pineal gland

1979 ◽  
Vol 27 (1) ◽  
Author(s):  
Takeo Deguchi
1990 ◽  
Vol 68 (1) ◽  
pp. 145-147 ◽  
Author(s):  
S. D. Wainwright ◽  
Lillian K. Wainwright

Norepinephrine is known to play a role in regulating the circadian rhythms of serotonin N-acetyltransferase activity and melatonin formation in the chick pineal gland. We have recently demonstrated that the cultured chick pineal exhibits a circadian rhythm in the incorporation of thymidine. In this study we show that this latter rhythm is not subject to adrenergic control.Key words: chick, pineal gland, thymidine incorporation, adrenergic regulation.


1977 ◽  
Vol 232 (4) ◽  
pp. E375
Author(s):  
T Deguchi

Serotonin N-acetyltransferase activity in the pineal gland and running acitvity of rats were measured under an ultradian lighting schedule (light/dark 6:6). When rats were moved from a diurnal lighting condition to the ultradian conditions, N-acetyltransferase activity showed a circadian rhythm, increasing once a day. N-acetyltransferase activity in the pups born and raised under the ultradian lighting conditions also exhibited a circadian change, the phase of which coincided with that of their mothers. When pups were raised by a foster mother with an inverted rhythmic phase from that of the original mother, the phase of the rhythm in N-acetyltransferase activity of the pups synchronized with that of the foster mother. When pups were separated from their mothers for 12 h/day, the circadian increase of N-acetyltransferase activity appeared during the dark period when they were separated from their mothers. The circadian rhythms of running acitvity were in phase with those of N-acetyltransferase activity in the pineal gland.


Author(s):  
О. М. Ивко ◽  
Н. С. Линькова ◽  
А. Р. Ильина ◽  
А. А. Шарова ◽  
Г. А. Рыжак

Ночная работа приводит к десинхронизации биоритмов, нарушению мелатонинобразующей функции и ускоренному старению эпифиза человека. Одним из перспективных геропротекторов, восстанавливающих синтез эпифизарного мелатонина, является пептид AEDG ( Ala-Glu-Asp-Gly ). Последний в 1,7 раза повышает экскрецию 6-сульфатоксимелатонина в моче людей среднего возраста, у которых этот показатель исходно снижен. Кроме того, у людей со сниженной мелатонинобразующей функцией эпифиза, пептид AEDG нормализует повышенную экспрессию циркадных генов Clock и Csnk 1 e в лейкоцитах и в 2 раза повышает сниженную экспрессию гена Cry 2 в лимфоцитах крови. В основе геропротекторного эффекта пептида AEDG лежит его способность восстанавливать мелатонинобразующую функцию эпифиза через регуляцию экспрессии часовых генов человека. Night work provides biorhythms desynchronization, disorder of melatonin-producing function and accelerated pineal gland aging. One of the promising geroprotectors restoring the pineal melatonin synthesis is the AEDG ( Ala-Glu-Asp-Gly ) peptide. AEDG peptide increases in 1,7 times the 6-sulfatoxymelatonin (6-SOMT) excretion in the urine of middle-aged people. Moreover, AEDG peptide normalized circadian Clock and Csnk1e genes hyper expression in leukocytes in 1,9-2,1 times and increases the Cry 2 gene hypo expression in peripheral blood lymphocytes in 2 times in people with reduced melatonin-producing epiphysis function. The geroprotective effect of the AEDG peptide is based on its ability to restore the epiphysis melatonin-producing function by means regulation of human circadian genes expression.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1567
Author(s):  
Sangiliyandi Gurunathan ◽  
Min-Hee Kang ◽  
Jin-Hoi Kim

Melatonin (MLT) is a powerful chronobiotic hormone that controls a multitude of circadian rhythms at several levels and, in recent times, has garnered considerable attention both from academia and industry. In several studies, MLT has been discussed as a potent neuroprotectant, anti-apoptotic, anti-inflammatory, and antioxidative agent with no serious undesired side effects. These characteristics raise hopes that it could be used in humans for central nervous system (CNS)-related disorders. MLT is mainly secreted in the mammalian pineal gland during the dark phase, and it is associated with circadian rhythms. However, the production of MLT is not only restricted to the pineal gland; it also occurs in the retina, Harderian glands, gut, ovary, testes, bone marrow, and lens. Although most studies are limited to investigating the role of MLT in the CNS and related disorders, we explored a considerable amount of the existing literature. The objectives of this comprehensive review were to evaluate the impact of MLT on the CNS from the published literature, specifically to address the biological functions and potential mechanism of action of MLT in the CNS. We document the effectiveness of MLT in various animal models of brain injury and its curative effects in humans. Furthermore, this review discusses the synthesis, biology, function, and role of MLT in brain damage, and as a neuroprotective, antioxidative, anti-inflammatory, and anticancer agent through a collection of experimental evidence. Finally, it focuses on the effect of MLT on several neurological diseases, particularly CNS-related injuries.


Sign in / Sign up

Export Citation Format

Share Document