Immunohistochemical localization of microtubule-associated proteins in the nervous system of the small intestine of guinea pig

1989 ◽  
Vol 255 (2) ◽  
Author(s):  
Hiromu Murofushi ◽  
Michiko Suzuki ◽  
Hikoichi Sakai ◽  
Shigeru Kobayashi
2003 ◽  
Vol 459 (1) ◽  
pp. 27-39 ◽  
Author(s):  
Sumei Liu ◽  
Hong-Zhen Hu ◽  
Chuanyun Gao ◽  
Na Gao ◽  
Guodu Wang ◽  
...  

2014 ◽  
Vol 307 (7) ◽  
pp. G719-G731 ◽  
Author(s):  
Guo-Du Wang ◽  
Xi-Yu Wang ◽  
Sumei Liu ◽  
Meihua Qu ◽  
Yun Xia ◽  
...  

Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca2+ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.


2001 ◽  
Vol 440 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Hong-Zhen Hu ◽  
Na Gao ◽  
Zhong Lin ◽  
Chuanyun Gao ◽  
Sumei Liu ◽  
...  

2018 ◽  
Vol 40 (5) ◽  
pp. 9-11
Author(s):  
Adam Tozer

Tau proteins are microtubule-associated proteins essential for the correct functioning of neurons. This small family of proteins, 352–441 amino acids in length, are abundant in the brain and exist to stabilize microtubules in neurons and glia (non-neuronal cells of the central nervous system) to ensure correct trafficking of cellular cargo and cell maintenance.


2020 ◽  
Vol 6 (14) ◽  
pp. eaaz4344 ◽  
Author(s):  
Camille Cuveillier ◽  
Julie Delaroche ◽  
Maxime Seggio ◽  
Sylvie Gory-Fauré ◽  
Christophe Bosc ◽  
...  

Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49722 ◽  
Author(s):  
Heike Fuhrmann-Stroissnigg ◽  
Rainer Noiges ◽  
Luise Descovich ◽  
Irmgard Fischer ◽  
Douglas E. Albrecht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document