Microtubule-associated proteins (MAPs) in the peripheral nervous system during development and regeneration

1997 ◽  
Vol 8 (3) ◽  
pp. 207-222 ◽  
Author(s):  
Jacques Nunez ◽  
Itzhak Fischer
PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49722 ◽  
Author(s):  
Heike Fuhrmann-Stroissnigg ◽  
Rainer Noiges ◽  
Luise Descovich ◽  
Irmgard Fischer ◽  
Douglas E. Albrecht ◽  
...  

2018 ◽  
Vol 40 (5) ◽  
pp. 9-11
Author(s):  
Adam Tozer

Tau proteins are microtubule-associated proteins essential for the correct functioning of neurons. This small family of proteins, 352–441 amino acids in length, are abundant in the brain and exist to stabilize microtubules in neurons and glia (non-neuronal cells of the central nervous system) to ensure correct trafficking of cellular cargo and cell maintenance.


2020 ◽  
Vol 6 (14) ◽  
pp. eaaz4344 ◽  
Author(s):  
Camille Cuveillier ◽  
Julie Delaroche ◽  
Maxime Seggio ◽  
Sylvie Gory-Fauré ◽  
Christophe Bosc ◽  
...  

Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.


2000 ◽  
Vol 151 (6) ◽  
pp. 1169-1178 ◽  
Author(s):  
Arabella Meixner ◽  
Silke Haverkamp ◽  
Heinz Wässle ◽  
Susanne Führer ◽  
Johann Thalhammer ◽  
...  

Microtubule-associated proteins such as MAP1B have long been suspected to play an important role in neuronal differentiation, but proof has been lacking. Previous MAP1B gene targeting studies yielded contradictory and inconclusive results and did not reveal MAP1B function. In contrast to two earlier efforts, we now describe generation of a complete MAP1B null allele. Mice heterozygous for this MAP1B deletion were not affected. Homozygous mutants were viable but displayed a striking developmental defect in the brain, the selective absence of the corpus callosum, and the concomitant formation of myelinated fiber bundles consisting of misguided cortical axons. In addition, peripheral nerves of MAP1B-deficient mice had a reduced number of large myelinated axons. The myelin sheaths of the remaining axons were of reduced thickness, resulting in a decrease of nerve conduction velocity in the adult sciatic nerve. On the other hand, the anticipated involvement of MAP1B in retinal development and γ-aminobutyric acid C receptor clustering was not substantiated. Our results demonstrate an essential role of MAP1B in development and function of the nervous system and resolve a previous controversy over its importance.


2010 ◽  
Vol 30 (5) ◽  
pp. 319-330 ◽  
Author(s):  
Max A. Tischfield ◽  
Elizabeth C. Engle

The many functions of the microtubule cytoskeleton are essential for shaping the development and maintaining the operation of the nervous system. With the recent discovery of congenital neurological disorders that result from mutations in genes that encode different α- and β-tubulin isotypes (TUBA1A, TUBB2B, TUBA8 and TUBB3), scientists have a novel paradigm to assess how select perturbations in microtubule function affect a range of cellular processes in humans. Moreover, important phenotypic distinctions found among the syndromes suggest that different tubulin isotypes can be utilized for distinct cellular functions during nervous system development. In the present review, we discuss: (i) the spectrum of congenital nervous system diseases that result from mutations in tubulin and MAPs (microtubule-associated proteins); (ii) the known or putative roles of these proteins during nervous system development; (iii) how the findings collectively support the ‘multi-tubulin’ hypothesis, which postulates that different tubulin isotypes may be required for specialized microtubule functions.


1991 ◽  
Vol 100 (1) ◽  
pp. 55-60 ◽  
Author(s):  
I.S. Georgieff ◽  
R.K. Liem ◽  
W. Mellado ◽  
J. Nunez ◽  
M.L. Shelanski

Using epitope mapping we have demonstrated that a high molecular weight protein (Mr approximately 115 × 10(3)) present in brain and spinal cord is a member of the tau family of microtubule-associated proteins. Antibodies directed against the amino-terminal, middle and carboxyl-terminal portions of tau recognize this protein. A limited survey of neuronal tissues has shown that this high molecular weight tau protein is present in brain, spinal cord, dorsal root ganglia, dorsal and ventral roots and peripheral nerves. High molecular weight tau protein is expressed at higher levels in spinal cord than in brain and is the only form of tau detected in the adult peripheral nervous system.


Sign in / Sign up

Export Citation Format

Share Document