scholarly journals MAP6 is an intraluminal protein that induces neuronal microtubules to coil

2020 ◽  
Vol 6 (14) ◽  
pp. eaaz4344 ◽  
Author(s):  
Camille Cuveillier ◽  
Julie Delaroche ◽  
Maxime Seggio ◽  
Sylvie Gory-Fauré ◽  
Christophe Bosc ◽  
...  

Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.

1990 ◽  
Vol 270 (3) ◽  
pp. 821-824 ◽  
Author(s):  
J Eyer ◽  
D White ◽  
C Gagnon

Brain tubulin polymerized with dynein isolated from bull spermatozoa forms cold-stable microtubules, in contrast with microtubules made of brain tubulin polymerized by brain microtubule-associated proteins (MAPs). The level of cold-stable microtubules depends on the concentration of dynein used. Addition of dynein to cold-unstable microtubules renders these microtubules stable to cold. Although ATP and a non-hydrolysable ATP analogue increase the formation of microtubules made of tubulin and dynein, these nucleotides have no effect on dynein cold-stabilizing properties. The data suggests that a new factor, not involving the dynein ATPase active site and present in bull sperm dynein preparations, confers cold-stability to microtubules.


2018 ◽  
Vol 40 (5) ◽  
pp. 9-11
Author(s):  
Adam Tozer

Tau proteins are microtubule-associated proteins essential for the correct functioning of neurons. This small family of proteins, 352–441 amino acids in length, are abundant in the brain and exist to stabilize microtubules in neurons and glia (non-neuronal cells of the central nervous system) to ensure correct trafficking of cellular cargo and cell maintenance.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49722 ◽  
Author(s):  
Heike Fuhrmann-Stroissnigg ◽  
Rainer Noiges ◽  
Luise Descovich ◽  
Irmgard Fischer ◽  
Douglas E. Albrecht ◽  
...  

1995 ◽  
Vol 6 (8) ◽  
pp. 981-996 ◽  
Author(s):  
R Takemura ◽  
S Okabe ◽  
T Umeyama ◽  
N Hirokawa

Microtubule bundles reminiscent of those found in neuronal processes are formed in fibroblasts and Sf9 cells that are transfected with the microtubule-associated proteins tau, MAP2, or MAP2c. To analyze the assembly process of these bundles and its relation to the microtubule polarity, we depolymerized the bundles formed in MAP2c-transfected COS cells using nocodazole, and observed the process of assembly of microtubule bundles after removal of the drug in cells microinjected with rhodamine-labeled tubulin. Within minutes of its removal, numerous short microtubule fragments were observed throughout the cytoplasm. These short fragments were randomly oriented and were already bundled. Somewhat longer, but still short bundles, were then found in the peripheral cytoplasm. These bundles became the primordium of the larger bundles, and gradually grew in length and width. The polarity orientation of microtubules in the reformed bundle as determined by "hook" procedure using electron microscope was uniform with the plus end distal to the cell nucleus. The results suggest that some mechanism(s) exists to orient the polarity of microtubules, which are not in direct continuity with the centrosome, during the formation of large bundles. The observed process presents a useful model system for studying the organization of microtubules that are not directly associated with the centrosomes, such as those observed in axons.


1997 ◽  
Vol 138 (5) ◽  
pp. 1067-1075 ◽  
Author(s):  
Harald Felgner ◽  
Rainer Frank ◽  
Jacek Biernat ◽  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
...  

Microtubules are flexible polymers whose mechanical properties are an important factor in the determination of cell architecture and function. It has been proposed that the two most prominent neuronal microtubule-associated proteins (MAPs), tau and MAP2, whose microtubule binding regions are largely homologous, make an important contribution to the formation and maintenance of neuronal processes, putatively by increasing the rigidity of microtubules. Using optical tweezers to manipulate single microtubules, we have measured their flexural rigidity in the presence of various constructs of tau and MAP2c. The results show a three- or fourfold increase of microtubule rigidity in the presence of wild-type tau or MAP2c, respectively. Unexpectedly, even low concentrations of MAPs promote a substantial increase in microtubule rigidity. Thus at ∼20% saturation with full-length tau, a microtubule exhibits >80% of the rigidity observed at near saturating concentrations. Several different constructs of tau or MAP2 were used to determine the relative contribution of certain subdomains in the microtubule-binding region. All constructs tested increase microtubule rigidity, albeit to different extents. Thus, the repeat domains alone increase microtubule rigidity only marginally, whereas the domains flanking the repeats make a significant contribution. Overall, there is an excellent correlation between the strength of binding of a MAP construct to microtubules (as represented by its dissociation constant Kd) and the increase in microtubule rigidity. These findings demonstrate that neuronal MAPs as well as constructs derived from them increase microtubule rigidity, and that the changes in rigidity observed with different constructs correlate well with other biochemical and physiological parameters.


Sign in / Sign up

Export Citation Format

Share Document