Follicular dendritic cells productively infected with immunodeficiency viruses transmit infection to T cells

1995 ◽  
Vol 184 (3) ◽  
Author(s):  
Raimund Sprenger ◽  
Kai-M. Toellner ◽  
Martin Ernst ◽  
Hans-Dieter Flad ◽  
Johannes Gerdes ◽  
...  
2014 ◽  
Vol 20 (11) ◽  
pp. 2862-2872 ◽  
Author(s):  
Jacob P. Smeltzer ◽  
Jason M. Jones ◽  
Steven C. Ziesmer ◽  
Deanna M. Grote ◽  
Bing Xiu ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3919-3919
Author(s):  
Mary J. Ninan ◽  
Ajay Rawal ◽  
Dhatri Kodali ◽  
Hector Mesa ◽  
Manish Patel ◽  
...  

Abstract Abstract 3919 Poster Board III-855 Identifying pathogenic mechanisms that contribute to the development of lymphomas and influence clinical behavior is critical for developing targeted therapies, and selecting patients who may benefit from such drugs. An important level of control of gene expression occurs during initiation of cap-mediated mRNA translation by the eukaryotic initiation factor-4F (eIF-4F) trimolecular complex (eIF-4E, eIF-4G and eIF-4A), in which eIF-4E is rate limiting and oncogenic. eIF-4F hyperactivity plays a key role in human cancers by mediating expression of proteins critical for cell growth, transformation and tumorigenesis. eIF-4F activity is controlled by repressor eIF-4 binding proteins (BPs). 4E-BP1 activity is regulated by phosphorylation. Hypo/non-phosphorylated 4E-BP1 is active, binds eIF-4E and impedes eIF-4F formation, blocking translation and inducing apoptosis. Phosphorylation of 4E-BP1 (p4E-BP1) releases bound eIF-4E, which initiates cap-dependent translation. Because only limited information is available on the expression and phosphorylation of 4E-BP1 in lymphomas, and since agents (e.g., antisense oligonucleotides and small molecules) that target eIF-4E have been developed, we examined the frequency and level of expression of 4E-BP1 and its phosphorylation in various subtypes of mature B cell non-Hodgkin's lymphomas (BCL). Forty-six BCLs (12 follicular [FL], 13 diffuse large B-cell [DLBCL], 7 mantle cell, 5 extranodal marginal zone, and 9 small lymphocytic [SLL] lymphomas), 4 FL with incipient/partial lymph node involvement, and 11 reactive lymphoid tissues were examined using immunohistochemistry for total and phosphorylated 4E-BP1. Staining intensity was graded as from 0 to 3+. Western immunoblotting (WB) was performed on lysates of 5 mature BCLs (2 FL, 3 DLBCL) and 2 reactive lymph nodal tissues for eIF-4G (total), eIF-4E and 4E-BP1 (total and phosphorylated) expression. In reactive lymphoid tissues, there was regional and cellular specificity of expression of 4E-BP1, with either lack of, or minimal (0 to 1+) cytoplasmic expression in follicular center cells and paracortical T-cells, 2+ expression in follicular dendritic cells and paracortical zone Langerhan cells, and 3+ expression in mantle and marginal zones. p4E-BP1 expression was inverted, with 3+ cytoplasmic immunoreactivity in reactive follicular center cells and no expression in the mantle and marginal zone cells or T-cells, and 2+ or 3+ immunoreactivity in follicular dendritic cells and paracortical zone Langerhan cells. In BCLs, a consistently high level (2+ or 3+) of cytoplasmic 4E-BP1 expression was seen in neoplastic lymphocytes in 45/46 (98%) cases. In contrast, p4E-BP1 was moderately or strongly expressed in 19/46 (41%) cases of BCL, being negative in 17 (37%) cases, and only dimly expressed in the remaining 10 (22%) cases. Three of 4 cases with incipient/partial involvement by FL were easily distinguishable from reactive germinal centers by strong, diffuse staining with 4E-BP1 (and 1+ staining in the 4th case) in neoplastic follicles, distinct from negative/weak staining of adjacent reactive germinal centers. In SLL, slightly higher 4E-BP1 expression was noted in proliferation centers in comparison to surrounding small mature lymphocytes. WB confirmed that non-phosphorylated and p4E-BP1 were expressed in reactive nodes, FL and DLBCL. Other components of the eIF-4F complex including eIF-4G, total and p-eIF-4E and total 4E-BP1 were detectable in whole tissue lysates from BCL samples. We conclude that (a) while 4E-BP1 is almost uniformly expressed in various subtypes of BCL, its level of phosphorylation (indicative of activity) varies widely and has regional and cellular specificity, and (b) 4E-BP1 expression may identify minimal/early lymphomatous involvement in tissues. We speculate that 4E-BP1 phosphorylation may influence the biological behavior of BCLs, since in other investigations we found that the level of phosphorylation of 4E-BP1 correlates with survival after CHOP-based chemotherapy in DLBCL. Our findings support therapeutic trials targeting the eIF-4E pathway in many BCL subtypes, particularly in patients where immunostaining identifies high levels of 4E-BP1 phosphorylation. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 83 (1) ◽  
pp. 150-158 ◽  
Author(s):  
Tyler C. Thacker ◽  
Xueyuan Zhou ◽  
Jacob D. Estes ◽  
Yongjun Jiang ◽  
Brandon F. Keele ◽  
...  

ABSTRACT HIV replication occurs throughout the natural course of infection in secondary lymphoid tissues and in particular within the germinal centers (GCs), where follicular dendritic cells (FDCs) are adjacent to CD4+ T cells. Because FDCs provide signaling that increases lymphocyte activation, we postulated that FDCs could increase human immunodeficiency virus (HIV) replication. We cultured HIV-infected CD4+ T cells alone or with FDCs and measured subsequent virus expression using HIV-p24 production and reverse transcription-PCR analyses. When cultured with FDCs, infected CD4+ T cells produced almost fourfold more HIV than when cultured alone, and the rate of virus transcription was doubled. Both FDCs and their supernatant increased HIV transcription and resulted in nuclear translocation of NF-κB and phosphorylated c-Jun in infected cells. FDCs produced soluble tumor necrosis factor alpha (TNF-α) ex vivo, and the addition of a blocking soluble TNF receptor ablated FDC-mediated HIV transcription. Furthermore, TNF-α was found highly expressed within GCs, and ex vivo GC CD4+ T cells supported greater levels of HIV-1 replication than other CD4+ T cells. These data indicated that FDCs increase HIV transcription and production by a soluble TNF-α-mediated mechanism. This FDC-mediated effect may account, at least in part, for the presence of persistent HIV replication in GCs. Therefore, in addition to providing an important reservoir of infectious virus, FDCs increase HIV production, contributing to a tissue microenvironment that is highly conducive to HIV transmission and expression.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaoyi Li ◽  
Qifan Zhang ◽  
Wanyue Zhang ◽  
Guofu Ye ◽  
Yanchen Ma ◽  
...  

Abstract Background The restoration of host hepatitis B virus (HBV)-specific antiviral immunity is an effective strategy for hepatitis B recovery. Follicular dendritic cells (FDCs) play a crucial role in immune regulation. The goal of the present study was to investigate the characteristics and functions of FDCs in chronic HBV infection. Methods The frequencies of FDCs in peripheral blood, liver, and spleen were measured in patients with chronic HBV infection. Isolated FDCs from splenic tissues of HBV-related liver cirrhosis-induced hypersplenism patients were cultured with autologous intrasplenic CD4+ T cells and CD19+ B cells. Results We observed that patients with chronic HBV infection had a significantly increased frequency of circulating FDCs compared to that of healthy controls. Additionally, the frequency of circulating FDCs was positively correlated with that of intrahepatic and intrasplenic counterparts. Moreover, positive correlations were observed between the frequencies of circulating FDCs and plasmablast and memory B cells, as well as C-X-C motif chemokine receptor type 5 (CXCR5)+CD4+ T cells and CXCR5+CD8+ T cells. Notably, in vitro experimental results demonstrated that FDCs derived from splenic tissues of chronic HBV patients facilitated interferon-γ and interleukin-21 production from autologous intrasplenic CD4+ T cells and promoted the proliferation of autologous intrasplenic CD19+ B cells. Conclusions Expanded FDCs in patients with chronic HBV infection may favor host immune responses against HBV. The identification of this unique population of cell may contribute to a better understanding of the immune regulatory mechanisms associated with chronic HBV infection and provide a potential immunotherapeutic target for this disease.


2020 ◽  
Author(s):  
Xiaoyi Li ◽  
Qifan Zhang ◽  
Wanyue Zhang ◽  
Guofu Ye ◽  
Yanchen Ma ◽  
...  

Abstract Background: Restoration of host hepatitis B virus (HBV)-specific antiviral immunity is an effective strategy for hepatitis B recovery. Follicular dendritic cells (FDCs) play a crucial role in immune regulation. This study aims to investigate the characteristics and functions of FDCs in chronic HBV infection. Methods: The frequencies of FDCs in peripheral blood, liver, and spleen were measured in patients with chronic HBV infection. Isolated FDCs from splenic tissues of HBV-related liver cirrhosis-induced hypersplenism patients were cultured with autologous intrasplenic CD4+ T cells and CD19+ B cells. Results: We found that patients with chronic HBV infection had a significantly increased frequency of circulating FDCs compared with that of healthy controls. Additionally, the frequency of circulating FDCs was positively correlated with that of intrahepatic and intrasplenic counterparts. Moreover, a positive correlation between the frequency of circulating FDCs and plasmablast and memory B cells, as well as C-X-C motif chemokine receptor type 5 (CXCR5)+CD4+ T cells and CXCR5+CD8+ T cells was also observed. Notably, in vitro experiments demonstrated that FDCs derived from splenic tissues of chronic HBV patients facilitated interferon-γ and interleukin-21 production from autologous intrasplenic CD4+ T cells and promoted the proliferation of autologous intrasplenic CD19+ B cells.Conclusions: Expanded FDCs in patients with chronic HBV infection may favor the host immune responses against HBV. The identification of this unique population may contribute to a better understanding of the immune regulatory mechanisms and provide a potential immunotherapeutic target in chronic HBV infection.


2020 ◽  
Author(s):  
Xiaoyi Li ◽  
Qifan Zhang ◽  
Wanyue Zhang ◽  
Guofu Ye ◽  
Yanchen Ma ◽  
...  

Abstract Background: The restoration of host hepatitis B virus (HBV)-specific antiviral immunity is an effective strategy for hepatitis B recovery. Follicular dendritic cells (FDCs) play a crucial role in immune regulation. The goal of the present study was to investigate the characteristics and functions of FDCs in chronic HBV infection. Methods: The frequencies of FDCs in peripheral blood, liver, and spleen were measured in patients with chronic HBV infection. Isolated FDCs from splenic tissues of HBV-related liver cirrhosis-induced hypersplenism patients were cultured with autologous intrasplenic CD4+ T cells and CD19+ B cells. Results: We observed that patients with chronic HBV infection had a significantly increased frequency of circulating FDCs compared to that of healthy controls. Additionally, the frequency of circulating FDCs was positively correlated with that of intrahepatic and intrasplenic counterparts. Moreover, positive correlations were observed between the frequencies of circulating FDCs and plasmablast and memory B cells, as well as C-X-C motif chemokine receptor type 5 (CXCR5)+CD4+ T cells and CXCR5+CD8+ T cells. Notably, in vitro experimental results demonstrated that FDCs derived from splenic tissues of chronic HBV patients facilitated interferon-γ and interleukin-21 production from autologous intrasplenic CD4+ T cells and promoted the proliferation of autologous intrasplenic CD19+ B cells.Conclusions: Expanded FDCs in patients with chronic HBV infection may favor host immune responses against HBV. The identification of this unique population of cell may contribute to a better understanding of the immune regulatory mechanisms associated with chronic HBV infection and provide a potential immunotherapeutic target for this disease.


Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 216-224 ◽  
Author(s):  
Anthony W. Butch ◽  
Kathleen A. Kelly ◽  
Michael S. Willbanks ◽  
Xinwen Yu

Follicular dendritic cells (FDCs) reside within germinal centers of secondary lymphoid tissue where they play a critical role in antigen-driven immune responses. FDCs express numerous adhesion molecules that facilitate cellular interactions with B and T cells within the germinal center microenvironment. Although human FDCs have been shown to influence B-cell development, very little is known about the ability of FDCs to regulate T-cell responses. To investigate this functional aspect of FDCs, highly enriched preparations were isolated by magnetic cell separation using the FDC-restricted monoclonal antibody HJ2. We found that isolated human FDCs inhibited proliferation of both autologous and allogeneic T cells, and were dependent on the number of FDCs present. Inhibition by FDCs was observed using two serologically distinct superantigens at multiple concentrations (Staphylococcus enterotoxin A and B). In contrast, B cells failed to inhibit, and often augmented superantigen-induced T-cell proliferation. Antibody-blocking studies showed that CD54 and CD106 were involved in the ability of FDC to inhibit T-cell proliferative responses. When FDCs and T cells were separated by a semipermeable membrane, the inhibitory effect was partially abrogated, demonstrating that in addition to cell-cell interactions, a soluble factor(s) was also involved in the process. The addition of indomethicin to cultures improved the proliferative response in the presence of FDCs, indicating that inhibition was mediated, in part, by prostaglandins. These results indicate that FDCs regulate T-cell proliferation by two molecular mechanisms and that FDC:T-cell interactions may play a pivotal role in germinal center development.


Sign in / Sign up

Export Citation Format

Share Document