hiv transcription
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 29)

H-INDEX

28
(FIVE YEARS 4)

Author(s):  
Vito A. Taddeo ◽  
Marvin J. Núñez ◽  
Manuela Beltrán ◽  
Ulises G. Castillo ◽  
Jenny Menjívar ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Cyril Jabea Ekabe ◽  
Njinju Asaba Clinton ◽  
Jules Kehbila ◽  
Ngangom Chouamo Franck

The inflammasome pathway is an important arm of the innate immune system that provides antiviral immunity against many viruses. The main pathways involved in virus infections include the NLRP3, IFI16, and AIM2 pathways. However, a succinct understanding of its role in HIV is not yet well elucidated. In this review, we showed that NLRP3 inflammasome activation plays a vital role in inhibiting HIV entry into target cells via the purinergic pathway; IFI16 detects intracellular HIV ssDNA, triggers interferon I and III production, and inhibits HIV transcription; and AIM2 binds to HIV dsDNA and triggers acute inflammation and pyroptosis. Remarkably, by understanding these mechanisms, new therapeutic strategies can be developed against the disease.


Author(s):  
Sara Moron-Lopez ◽  
Silvia Bernal ◽  
Joseph K Wong ◽  
Javier Martinez-Picado ◽  
Steven A Yukl

Abstract Background Antiretroviral therapy (ART) intensification and disruption of latency have been suggested as strategies to eradicate HIV. ABX464 is a novel antiviral that inhibits HIV RNA biogenesis. We investigated the effect of ABX464 on HIV transcription and total and intact HIV DNA in CD4 + T cells from ART-suppressed participants enrolled in the ABIVAX-005 clinical trial (NCT02990325). Methods Peripheral CD4 + T cells were available for analysis from nine ART-suppressed participants who were treated daily with 150mg of ABX464 for 4 weeks. Total and intact HIV DNA, and initiated, 5’elongated, unspliced, polyadenylated and multiply-spliced HIV transcripts, were quantified at weeks 0, 4 and 8 using droplet digital PCR. Results We observed a significant decrease in total HIV DNA (p=0.008, median fold-change=0.8) and a lower median level of intact HIV DNA (p=n.s., median fold-change=0.8) after ABX464 treatment (wk 0 vs. 4). Moreover, we observed a decrease in initiated HIV RNA per million CD4 + T cells and per provirus (p=0.05, median fold-change=0.7; p=0.004, median fold-change=0.5, respectively), a trend towards a decrease in the 5’elongated HIV RNA per provirus (p=0.07, median fold-change=0.5), and a lower median level of unspliced HIV RNA (p=n.s., median fold-change=0.6), but no decrease in polyadenylated or multiply-spliced HIV RNA. Conclusion In this substudy, ABX464 had a dual effect of decreasing total HIV DNA (and possibly intact proviruses) and decreasing the amount of HIV transcription per provirus. To further characterize its specific mechanism of inhibiting HIV transcription, long-term administration of ABX464 should be studied in a larger cohort.


2021 ◽  
Author(s):  
Michelle E. Wong ◽  
Chad J. Johnson ◽  
Anna C. Hearps ◽  
Anthony Jaworowski

Latent HIV reservoirs persist in people living with HIV despite effective antiretroviral therapy and contribute to rebound viremia upon treatment interruption. Macrophages are an important reservoir cell-type, but analysis of agents that modulate latency in macrophages is limited by lack of appropriate in vitro models. We therefore generated an experimental system to investigate this by purifying non-productively-infected human monocyte-derived macrophages (MDM) following in vitro infection with an M-tropic EGFP reporter HIV clone, and quantified activation of HIV transcription using live-cell fluorescence microscopy. The proportion of HIV-infected MDM was quantified by qPCR detection of HIV DNA, and GFP expression was validated as a marker of productive HIV infection by co-labelling of HIV Gag protein. HIV transcription spontaneously reactivated in latently-infected MDM at a rate of 0.22% ± 0.04 cells per day (mean ± SEM, n=10 independent donors), producing infectious virions able to infect heterologous T cells in coculture experiments, and both T cells and TZM-bl cells in a cell-free infection system using MDM culture supernatants. Polarization to an M1 phenotype with IFNγ + TNF resulted in a 2.3 fold decrease in initial HIV infection of MDM (p<0.001, n=8) and 1.4 fold decrease in spontaneous reactivation (p=0.025, n=6) whereas M2 polarization using IL-4 prior to infection led to a 1.6 fold decrease in HIV infectivity (p=0.028, n=8), but a 2.0 fold increase in the rate of HIV reactivation in latently-infected MDM (p=0.023, n=6). The latency reversing agents bryostatin and vorinostat, but not panobinostat, significantly induced HIV reactivation in latently infected MDM (p=0.031 and p=0.038, respectively, n=6). Importance: Agents which modulate latent HIV reservoirs in infected cells are of considerable interest to HIV cure strategies. The present study characterizes a robust, reproducible model enabling quantification of HIV reactivation in primary HIV-infected human MDM which is relatively insensitive to the monocyte donor source and hence suitable for evaluating latency modifiers in MDM. The rate of initial viral infection was greater than the rate of HIV reactivation, suggesting different mechanisms regulate these processes. HIV reactivation was sensitive to macrophage polarization, suggesting cellular and tissue environments influence HIV reactivation in different macrophage populations. Importantly, latently infected MDM showed different susceptibility to certain latency reversing agents known to be effective in T cells, indicating dedicated strategies may be required to target latently-infected macrophage populations in vivo .


ChemMedChem ◽  
2021 ◽  
Author(s):  
Asako Yamayoshi ◽  
Hiroyuki Fukumoto ◽  
Rie Hayashi ◽  
Kyosuke Kishimoto ◽  
Akio Kobori ◽  
...  
Keyword(s):  

2021 ◽  
Vol 85 (2) ◽  
Author(s):  
Maelig G. Morvan ◽  
Fernando C. Teque ◽  
Christopher P. Locher ◽  
Jay A. Levy

SUMMARY The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.


Retrovirology ◽  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Edrous Alamer ◽  
Chaojie Zhong ◽  
Renee Hajnik ◽  
Lynn Soong ◽  
Haitao Hu

AbstractFollowing reverse transcription, HIV viral DNA is integrated into host cell genomes and establishes a stable latent infection, which has posed a major obstacle for obtaining a cure for HIV. HIV proviral transcription is regulated in cellular reservoirs by complex host epigenetic and transcriptional machineries. The Bromodomain (BD) and Extra-Terminal Domain (ET) protein, BRD4, is an important epigenetic reader that interacts with acetyl-histones and a variety of chromatin and transcriptional regulators to control gene expression, including HIV. Modulation of BRD4 by a pan BET inhibitor (JQ1) has been shown to activate HIV transcription. Recent studies by my group and others indicate that the function of BRD4 is versatile and its effects on HIV transcription may depend on the partner proteins or pathways engaged by BRD4. Our studies have reported a novel class of small-molecule modulators that are distinct from JQ1 but induce HIV transcriptional suppression through BRD4. Herein, we reviewed recent research on the modulation of BRD4 in HIV epigenetic regulation and discussed their potential implications for finding an HIV cure.


2020 ◽  
Author(s):  
Luisa Mori ◽  
Katharine Jenike ◽  
Yang-Hui Jimmy Yeh ◽  
Benoît Lacombe ◽  
Chuan Li ◽  
...  

HIV transcription requires assembly of cellular transcription factors at the HIV-1promoter. The TFIIH general transcription factor facilitates transcription initiation by opening the DNA strands around the transcription start site and phosphorylating the C-terminal domain for RNA polymerase II (RNAPII) for activation. Spironolactone (SP), an FDA approved aldosterone antagonist, triggers the proteasomal degradation of the XPB subunit of TFIIH, and concurrently suppresses acute HIV infection in vitro. Here we investigated SP as a possible block-and-lock agent for a functional cure aimed at the transcriptional silencing of the viral reservoir. The long-term activity of SP was investigated in primary and cell line models of HIV-1 latency and reactivation. We show that SP rapidly inhibits HIV-1 transcription by reducing RNAPII recruitment to the HIV-1 genome. shRNA knockdown of XPB confirmed XPB degradation as the mechanism of action. Unfortunately, long-term pre-treatment with SP does not result in epigenetic suppression of HIV upon SP treatment interruption, since virus rapidly rebounds when XPB reemerges; however, SP alone without ART maintains the transcriptional suppression. Importantly, SP inhibits HIV reactivation from latency in both cell line models and resting CD4+T cells isolated from aviremic infected individuals upon cell stimulation with latency reversing agents. Furthermore, long-term treatment with concentrations of SP that potently degrade XPB does not lead to global dysregulation of cellular mRNA expression. Overall, these results suggest that XPB plays a key role in HIV transcriptional regulation and XPB degradation by SP strengthens the potential of HIV transcriptional inhibitors in block-and-lock HIV cure approaches. IMPORTANCE Antiretroviral therapy (ART) effectively reduces an individual’s HIV loads to below the detection limit, nevertheless rapid viral rebound immediately ensues upon treatment interruption. Furthermore, virally suppressed individuals experience chronic immune activation from ongoing low-level virus expression. Thus, the importance of identifying novel therapeutics to explore in block-and-lock HIV functional cure approaches, aimed at the transcriptional and epigenetic silencing of the viral reservoir to block reactivation from latency. We investigated the potential of repurposing the FDA-approved spironolactone (SP), as one such drug. SP treatment rapidly degrades a host transcription factor subunit, XPB, inhibiting HIV transcription and blocking reactivation from latency. Long-term SP treatment does not affect cellular viability, cell cycle progression or global cellular transcription. SP alone blocks HIV transcription in the absence of ART but does not delay rebound upon drug removal as XPB rapidly reemerges. This study highlights XPB as a novel drug target in block-and-lock therapeutic approaches.


Biology Open ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. bio052969
Author(s):  
Jared P. Taylor ◽  
Lucas H. Armitage ◽  
Daniel L. Aldridge ◽  
Melanie N. Cash ◽  
Mark A. Wallet

ABSTRACTInfection with human immunodeficiency virus 1 (HIV-1) remains incurable because long-lived, latently-infected cells persist during prolonged antiretroviral therapy. Attempts to pharmacologically reactivate and purge the latent reservoir with latency reactivating agents (LRAs) such as protein kinase C (PKC) agonists (e.g. ingenol A) or histone deacetylase (HDAC) inhibitors (e.g. SAHA) have shown promising but incomplete efficacy. Using the J-Lat T cell model of HIV latency, we found that the plant-derived compound harmine enhanced the efficacy of existing PKC agonist LRAs in reactivating latently-infected cells. Treatment with harmine increased not only the number of reactivated cells but also increased HIV transcription and protein expression on a per-cell basis. Importantly, we observed a synergistic effect when harmine was used in combination with ingenol A and the HDAC inhibitor SAHA. An investigation into the mechanism revealed that harmine, when used with LRAs, increased the activity of NFκB, MAPK p38, and ERK1/2. Harmine treatment also resulted in reduced expression of HEXIM1, a negative regulator of transcriptional elongation. Thus, harmine enhanced the effects of LRAs by increasing the availability of transcription factors needed for HIV reactivation and promoting transcriptional elongation. Combination therapies with harmine and LRAs could benefit patients by achieving deeper reactivation of the latent pool of HIV provirus.


Sign in / Sign up

Export Citation Format

Share Document