Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera)

1985 ◽  
Vol 242 (3) ◽  
Author(s):  
G�rard Arnold ◽  
Claudine Masson ◽  
Sati Budharugsa
2011 ◽  
Vol 61 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Carminda da Cruz-Landim ◽  
Thaisa Cristina Roat

AbstractIn insects the antennal lobes (AL) constitute the brain deutocerebrum. In bees they consist of two neuropil regions, each associated with one antenna, delimited by a layer of glial cells and somata of neurons. The neuropil is organized in distinct globular structures of dense synaptic axons coming from the olfactory organs of the antennae, known as glomeruli. In Apis mellifera, as in other eusocial species of bees, queens, workers, and drones perform different functions in the colony and consequently the organs associated with these functions undergo a differential development. In this paper we analyzed the structure and size of the differentiating AL of queens, workers, and drones during metamorphosis using light microscopy. During metamorphosis the neuropil enlarge and differentiates into concentric structures known as glomeruli. The results showed size, structural and temporal differences in the glomeruli development among the classes of individuals of the colony. The neuropil differentiation starts early and is faster in drones and newly emerged worker is the colony individual class with greater neuropil area in AL. These results are discussed taking in account the functions of the individuals in the colony.


2020 ◽  
Vol 12 (3) ◽  
pp. 241-246
Author(s):  
R. Shumkova ◽  
R. Balkanska

Abstract. The aim of the present study is to investigate the effect of Baikal EM1 on the productive parameters of the bee colonies (Apis mellifera L.) during spring and autumn feeding and the chemical composition of the worker bee bodies. Two groups of bee colonies were formed (1 experimental group and 1 control group). During the spring feeding the experimental group was fed with Baikal ЕМ1 at a dose of 5 ml/0.500 L added in the sugar syrup (sugar:water 1:1) for 4 consecutive days at the start of the experiment. Each bee colony received 5 L sugar syrup. During the autumn feeding the experimental group received Baikal ЕМ1 at a dose of 20 ml/10 L sugar syrup. Each bee colony received 10 L sugar syrup. The control group received only sugar syrup. The spring and autumn feeding of the group fed with Baikal EM1 significantly increases the strength of the bee colonies and the amount of the sealed worker brood compared to the control group. According to the results obtained for the strength of the bee colonies and the bee brood supplementary feeding with Baikal EM1 is very effective in the autumn feeding. For these two parameters there are significant differences between the experimental and control on 29.08. (p<0.01), 10.09. (p<0.05) and 22.09.2018 (p<0.01). Statistically significant differences were reported for the strength of the bee colonies (p<0.01) and the amount of sealed worker brood (p<0.001) in the experimental group receiving Baikal EM1 before wintering compared to the control group. It can be expected to reveal a tendency for better spring development in the next year. Feeding with Baikal EM1 does not affect the chemical composition of worker bee bodies.


2021 ◽  
Author(s):  
Ettore Tiraboschi ◽  
Luana Leonardelli ◽  
Gianluca Segata ◽  
Elisa Rigosi ◽  
Albrecht Haase

We report that airflow produces a complex activation pattern in the antennal lobes of the honeybee Apis mellifera. Glomerular response maps provide a stereotypical code for the intensity and the dynamics of mechanical stimuli that is superimposed on the olfactory code. We show responses to modulated stimuli suggesting that this combinatorial code could provide information about the intensity, direction, and dynamics of the airflow during flight and waggle dance communication.


Sign in / Sign up

Export Citation Format

Share Document