Mutations of the mitochondrial DNA of Saccharomyces cerevisiae which affect the interaction between mitochondrial ribosomes and the inner mitochondrial membrane

1978 ◽  
Vol 164 (2) ◽  
pp. 155-162 ◽  
Author(s):  
T. W. Spithill ◽  
M. K. Trembath ◽  
H. B. Lukins ◽  
A. W. Linnane
1994 ◽  
Vol 14 (2) ◽  
pp. 1045-1053 ◽  
Author(s):  
N G Brown ◽  
M C Costanzo ◽  
T D Fox

The PET54, PET122, and PET494 proteins, which are associated with the yeast inner mitochondrial membrane, specifically activate translation of the mitochondrially encoded COX3 mRNA. We used the two-hybrid system to test whether pairs of these proteins, when fused to either the GAL4 DNA-binding or transcriptional activating domain, can physically associate as measured by the expression of the GAL4-dependent reporter, lacZ. PET54 and PET122 interacted in this system, and an amino-terminally truncated PET494 fragment showed an interaction with PET54. We also detected functional interactions between PET54 and PET122 genetically: a pet54 missense substitution (Phe to Gly at position 244) that caused a severe respiratory defect was suppressed both by a missense substitution affecting PET122 (Gly to Val at position 211) and by overproduction of wild-type PET122. Both Gly and Ala, substituted at PET54 position 244, disrupted the two-hybrid interactions with PET122 and PET494. While Ala at PET54 position 244 caused only a modest respiratory phenotype alone, it caused a severe respiratory defect when combined with a cold-sensitive mitochondrial mutation affecting the COX3 mRNA 5' leader. This synthetic defect was suppressed by a missense substitution in PET122 and by overproduction of wild-type PET122, indicating functional interactions among PET54, PET122, and the mRNA. Taken together with previous work, these data suggest that a complex containing PET54, PET122, and PET494 mediates the interaction of the COX3 mRNA with mitochondrial ribosomes at the surface of the inner membrane.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 147-154 ◽  
Author(s):  
Douglas J Kominsky ◽  
Peter E Thorsness

Abstract Organisms that can grow without mitochondrial DNA are referred to as “petite-positive” and those that are inviable in the absence of mitochondrial DNA are termed “petite-negative.” The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the α- and γ-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F1 component of mitochondrial ATP synthase are also petite-negative. Thus, the F1 complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.


1991 ◽  
Vol 11 (11) ◽  
pp. 5487-5496 ◽  
Author(s):  
M E Dumont ◽  
T S Cardillo ◽  
M K Hayes ◽  
F Sherman

Heme is covalently attached to cytochrome c by the enzyme cytochrome c heme lyase. To test whether heme attachment is required for import of cytochrome c into mitochondria in vivo, antibodies to cytochrome c have been used to assay the distributions of apo- and holocytochromes c in the cytoplasm and mitochondria from various strains of the yeast Saccharomyces cerevisiae. Strains lacking heme lyase accumulate apocytochrome c in the cytoplasm. Similar cytoplasmic accumulation is observed for an altered apocytochrome c in which serine residues were substituted for the two cysteine residues that normally serve as sites of heme attachment, even in the presence of normal levels of heme lyase. However, detectable amounts of this altered apocytochrome c are also found inside mitochondria. The level of internalized altered apocytochrome c is decreased in a strain that completely lacks heme lyase and is greatly increased in a strain that overexpresses heme lyase. Antibodies recognizing heme lyase were used to demonstrate that the enzyme is found on the outer surface of the inner mitochondrial membrane and is not enriched at sites of contact between the inner and outer mitochondrial membranes. These results suggest that apocytochrome c is transported across the outer mitochondrial membrane by a freely reversible process, binds to heme lyase in the intermembrane space, and is then trapped inside mitochondria by an irreversible conversion to holocytochrome c accompanied by folding to the native conformation. Altered apocytochrome c lacking the ability to have heme covalently attached accumulates in mitochondria only to the extent that it remains bound to heme lyase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zachary A. Kemmerer ◽  
Kyle P. Robinson ◽  
Jonathan M. Schmitz ◽  
Mateusz Manicki ◽  
Brett R. Paulson ◽  
...  

AbstractBeyond its role in mitochondrial bioenergetics, Coenzyme Q (CoQ, ubiquinone) serves as a key membrane-embedded antioxidant throughout the cell. However, how CoQ is mobilized from its site of synthesis on the inner mitochondrial membrane to other sites of action remains a longstanding mystery. Here, using a combination of Saccharomyces cerevisiae genetics, biochemical fractionation, and lipid profiling, we identify two highly conserved but poorly characterized mitochondrial proteins, Ypl109c (Cqd1) and Ylr253w (Cqd2), that reciprocally affect this process. Loss of Cqd1 skews cellular CoQ distribution away from mitochondria, resulting in markedly enhanced resistance to oxidative stress caused by exogenous polyunsaturated fatty acids, whereas loss of Cqd2 promotes the opposite effects. The activities of both proteins rely on their atypical kinase/ATPase domains, which they share with Coq8—an essential auxiliary protein for CoQ biosynthesis. Overall, our results reveal protein machinery central to CoQ trafficking in yeast and lend insights into the broader interplay between mitochondria and the rest of the cell.


2011 ◽  
Vol 286 (41) ◽  
pp. 35477-35484 ◽  
Author(s):  
Jean Velours ◽  
Claire Stines-Chaumeil ◽  
Johan Habersetzer ◽  
Stéphane Chaignepain ◽  
Alain Dautant ◽  
...  

The involvement of subunit 6 (a) in the interface between yeast ATP synthase monomers has been highlighted. Based on the formation of a disulfide bond and using the unique cysteine 23 as target, we show that two subunits 6 are close in the inner mitochondrial membrane and in the solubilized supramolecular forms of the yeast ATP synthase. In a null mutant devoid of supernumerary subunits e and g that are involved in the stabilization of ATP synthase dimers, ATP synthase monomers are close enough in the inner mitochondrial membrane to make a disulfide bridge between their subunits 6, and this proximity is maintained in detergent extract containing this enzyme. The cross-linking of cysteine 23 located in the N-terminal part of the first transmembrane helix of subunit 6 suggests that this membrane-spanning segment is in contact with its counterpart belonging to the ATP synthase monomer that faces it and participates in the monomer-monomer interface.


Sign in / Sign up

Export Citation Format

Share Document