The POL1 gene from the fission yeast, Schizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha

1991 ◽  
Vol 226-226 (1-2) ◽  
pp. 182-189 ◽  
Author(s):  
Véronique Damagnez ◽  
Jeanne Tillit ◽  
Anne-Marie de Recondo ◽  
Giuseppe Baldacci
1991 ◽  
Vol 11 (2) ◽  
pp. 611-619 ◽  
Author(s):  
J T Olesen ◽  
J D Fikes ◽  
L Guarente

The fission yeast Schizosaccharomyces pombe is immensely diverged from budding yeast (Saccharomyces cerevisiae) on an evolutionary time scale. We have used a fission yeast library to clone a homolog of S. cerevisiae HAP2, which along with HAP3 and HAP4 forms a transcriptional activation complex that binds to the CCAAT box. The S. pombe homolog php2 (S. pombe HAP2) was obtained by functional complementation in an S. cerevisiae hap2 mutant and retains the ability to associate with HAP3 and HAP4. We have previously demonstrated that the HAP2 subunit of the CCAAT-binding transcriptional activation complex from S. cerevisiae contains a 65-amino-acid "essential core" structure that is divisible into subunit association and DNA recognition domains. Here we show that Php2 contains a 60-amino-acid block that is 82% identical to this core. The remainder of the 334-amino-acid protein is completely without homology to HAP2. The function of php2 in S. pombe was investigated by disrupting the gene. Strikingly, like HAP2 in S. cerevisiae, the S. pombe gene is specifically involved in mitochondrial function. This contrasts to the situation in mammals, in which the homologous CCAAT-binding complex is a global transcriptional activator.


1991 ◽  
Vol 11 (2) ◽  
pp. 611-619
Author(s):  
J T Olesen ◽  
J D Fikes ◽  
L Guarente

The fission yeast Schizosaccharomyces pombe is immensely diverged from budding yeast (Saccharomyces cerevisiae) on an evolutionary time scale. We have used a fission yeast library to clone a homolog of S. cerevisiae HAP2, which along with HAP3 and HAP4 forms a transcriptional activation complex that binds to the CCAAT box. The S. pombe homolog php2 (S. pombe HAP2) was obtained by functional complementation in an S. cerevisiae hap2 mutant and retains the ability to associate with HAP3 and HAP4. We have previously demonstrated that the HAP2 subunit of the CCAAT-binding transcriptional activation complex from S. cerevisiae contains a 65-amino-acid "essential core" structure that is divisible into subunit association and DNA recognition domains. Here we show that Php2 contains a 60-amino-acid block that is 82% identical to this core. The remainder of the 334-amino-acid protein is completely without homology to HAP2. The function of php2 in S. pombe was investigated by disrupting the gene. Strikingly, like HAP2 in S. cerevisiae, the S. pombe gene is specifically involved in mitochondrial function. This contrasts to the situation in mammals, in which the homologous CCAAT-binding complex is a global transcriptional activator.


1992 ◽  
Vol 12 (4) ◽  
pp. 1405-1411
Author(s):  
J R Bischoff ◽  
D Casso ◽  
D Beach

Overexpression of wild-type p53 in mammalian cells blocks growth. We show here that the overexpression of wild-type human p53 in the fission yeast Schizosaccharomyces pombe also blocks growth, whereas the overexpression of mutant forms of p53 does not. The p53 polypeptide is located in the nucleus and is phosphorylated at both the cdc2 site and the casein kinase II site in S. pombe. A new dominant mutation of p53, resulting in the change of a cysteine to an arginine at amino acid residue 141, was identified. The results presented here demonstrate that S. pombe could provide a simple system for studying the mechanism of action of human p53.


1985 ◽  
Vol 5 (11) ◽  
pp. 3261-3269 ◽  
Author(s):  
J Choe ◽  
T Schuster ◽  
M Grunstein

The histone H2A and H2B genes of the fission yeast Schizosaccharomyces pombe were cloned and sequenced. Southern blot and sequence analyses showed that, unlike other eucaryotes, Saccharomyces cerevisiae included, S. pombe has unequal numbers of these genes, containing two histone H2A genes (H2A-alpha and -beta) and only one H2B gene (H2B-alpha) per haploid genome. H2A- and H2B-alpha are adjacent to each other and are divergently transcribed. H2A-beta has no other histone gene in close proximity. Preceding both H2A-alpha and -beta is a highly conserved 19-base-pair sequence (5'-CATCAC/AAACCCTAACCCTG-3'). The H2A DNA sequences encode two histone H2A subtypes differing in amino acid sequence (three residues) and size (H2A-alpha, 131 residues; H2A-beta, 130 residues). H2B-alpha codes for a 125-amino-acid protein. Sequence evolution is extensive between S. pombe and S. cerevisiae and displays unique patterns of divergence. Certain N-terminal sequences normally divergent between eucaryotes are conserved between the two yeasts. In contrast, the normally conserved hydrophobic core of H2A is as divergent between the yeasts as between S. pombe and calf.


1992 ◽  
Vol 12 (4) ◽  
pp. 1405-1411 ◽  
Author(s):  
J R Bischoff ◽  
D Casso ◽  
D Beach

Overexpression of wild-type p53 in mammalian cells blocks growth. We show here that the overexpression of wild-type human p53 in the fission yeast Schizosaccharomyces pombe also blocks growth, whereas the overexpression of mutant forms of p53 does not. The p53 polypeptide is located in the nucleus and is phosphorylated at both the cdc2 site and the casein kinase II site in S. pombe. A new dominant mutation of p53, resulting in the change of a cysteine to an arginine at amino acid residue 141, was identified. The results presented here demonstrate that S. pombe could provide a simple system for studying the mechanism of action of human p53.


Microbiology ◽  
2009 ◽  
Vol 155 (12) ◽  
pp. 3816-3826 ◽  
Author(s):  
Hiroyuki Mukaiyama ◽  
Shiro Kajiwara ◽  
Akira Hosomi ◽  
Yuko Giga-Hama ◽  
Naotaka Tanaka ◽  
...  

Autophagy is triggered when organisms sense radical environmental changes, including nutritional starvation. During autophagy, cytoplasmic components, including organelles, are enclosed within autophagosomes and are degraded upon lysosome–vacuole fusion. In this study, we show that processing of GFP-tagged Atg8 can serve as a marker for autophagy in the fission yeast Schizosaccharomyces pombe. Using this marker, 13 Atg homologues were also found to be required for autophagy in fission yeast. In budding yeast, autophagy-deficient mutants are known to be sterile, whereas in fission yeast we found that up to 30 % of autophagy-defective cells with amino acid auxotrophy were able to recover sporulation when an excess of required amino acids was supplied. Furthermore, we found that approximately 15 % of the autophagy-defective cells were also able to sporulate when a prototrophic strain was subjected to nitrogen starvation, which suggested that fission yeast may store sufficient intracellular nitrogen to allow partial sporulation under nitrogen-limiting conditions, although the majority of the nitrogen source is supplied by autophagy. Monitoring of the sporulation process revealed that the process was blocked non-specifically at various stages in the atg1Δ and atg12Δ mutants, possibly due to a shortage of amino acids. Taking advantage of this partial sporulation ability of fission yeast, we sought evidence for the existence of a recycling system for nitrogen sources during starvation.


1985 ◽  
Vol 5 (11) ◽  
pp. 3261-3269
Author(s):  
J Choe ◽  
T Schuster ◽  
M Grunstein

The histone H2A and H2B genes of the fission yeast Schizosaccharomyces pombe were cloned and sequenced. Southern blot and sequence analyses showed that, unlike other eucaryotes, Saccharomyces cerevisiae included, S. pombe has unequal numbers of these genes, containing two histone H2A genes (H2A-alpha and -beta) and only one H2B gene (H2B-alpha) per haploid genome. H2A- and H2B-alpha are adjacent to each other and are divergently transcribed. H2A-beta has no other histone gene in close proximity. Preceding both H2A-alpha and -beta is a highly conserved 19-base-pair sequence (5'-CATCAC/AAACCCTAACCCTG-3'). The H2A DNA sequences encode two histone H2A subtypes differing in amino acid sequence (three residues) and size (H2A-alpha, 131 residues; H2A-beta, 130 residues). H2B-alpha codes for a 125-amino-acid protein. Sequence evolution is extensive between S. pombe and S. cerevisiae and displays unique patterns of divergence. Certain N-terminal sequences normally divergent between eucaryotes are conserved between the two yeasts. In contrast, the normally conserved hydrophobic core of H2A is as divergent between the yeasts as between S. pombe and calf.


2009 ◽  
Vol 20 (4) ◽  
pp. 1213-1222 ◽  
Author(s):  
Chen Chun Pai ◽  
Ignacio García ◽  
Shao Win Wang ◽  
Sue Cotterill ◽  
Stuart A. MacNeill ◽  
...  

The tetrameric GINS complex, consisting of Sld5-Psf1-Psf2-Psf3, plays an essential role in the initiation and elongation steps of eukaryotic DNA replication, although its biochemical function is unclear. Here we investigate the function of GINS in fission yeast, using fusion of Psf1 and Psf2 subunits to a steroid hormone-binding domain (HBD) to make GINS function conditional on the presence of β-estradiol. We show that inactivation of Psf1-HBD causes a tight but rapidly reversible DNA replication arrest phenotype. Inactivation of Psf2-HBD similarly blocks premeiotic DNA replication and leads to loss of nuclear localization of another GINS subunit, Psf3. Inactivation of GINS has distinct effects on the replication origin association and chromatin binding of two of the replicative DNA polymerases. Inactivation of Psf1 leads to loss of chromatin binding of DNA polymerase ε, and Cdc45 is similarly affected. In contrast, chromatin association of the catalytic subunit of DNA polymerase α is not affected by defective GINS function. We suggest that GINS functions in a pathway that involves Cdc45 and is necessary for DNA polymerase ε chromatin binding, but that a separate pathway sets up the chromatin association of DNA polymerase α.


Sign in / Sign up

Export Citation Format

Share Document