Mechanism of peroxidase isoenzyme induction in pollinated Nicotiana alata styles

1982 ◽  
Vol 62 (4) ◽  
pp. 305-309 ◽  
Author(s):  
G. M. M. Bredemeijer
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 519d-519 ◽  
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Nicotiana alata Link and Otto. was transformed via Agrobacterium tumefaciens encoding a senescence-specific promoter SAG12 cloned from Arabidopsis thaliana fused to a Agrobacterium tumefaciens gene encoding isopentenyl transferase (IPT) that catalyzes cytokinin synthesis. This was considered an autoregulatory senescence-inhibitor system. In 1996, we reported delayed senescence of intact flowers by 2 to 6 d and delayed leaf senescence of transgenic vs. wild-type N. alata. Further evaluations in 1997 revealed several other interesting effects of the SAG12-IPT gene construct. Measurement of chlorophyll content of mature leaves showed higher levels of both chlorophyll a and b in transgenic material under normal fertilization and truncated fertilization regimes. At 4 to 5 months of age transgenic plants expressed differences in plant height, branching, and dry weight. Plant height was reduced by 3 to 13 cm; branch counts increased 2 to 3 fold; and shoot dry weight increased up to 11 g over wild-type N. alata. These observations indicate the system is not tightly autoregulated and may prove useful to the floriculture industry for producing compact and more floriferous plants.


2016 ◽  
Vol 170 (4) ◽  
pp. 1962-1974 ◽  
Author(s):  
Edwin R. Lampugnani ◽  
Yin Ying Ho ◽  
Isabel E. Moller ◽  
Poh-Ling Koh ◽  
John F. Golz ◽  
...  
Keyword(s):  

2003 ◽  
Vol 30 (6) ◽  
pp. 577 ◽  
Author(s):  
Alfonso Ros Barceló ◽  
Federico Pomar ◽  
Matías López-Serrano ◽  
Maria Angeles Pedreño

Peroxidases are heme-containing enzymes that catalyse the one-electron oxidation of several substrates at the expense of H2O2. They are probably encoded by a large multigene family in grapevines, and therefore show a high degree of polymorphism. Grapevine peroxidases are glycoproteins of high thermal stability, whose molecular weight usually ranges from 35 to 45 kDa. Their visible spectrum shows absorption bands characteristic of high-spin class III peroxidases. Grapevine peroxidases are capable of accepting a wide range of natural compounds as substrates, such as the cell wall protein extensin, plant growth regulators such as IAA, and phenolics such as benzoic acids, stilbenes, flavonols, cinnamyl alcohols and anthocyanins. They are located in cell walls and vacuoles. These locations are in accordance with their key role in determining the final cell wall architecture, especially regarding lignin deposition and extensin insolubilization, and the turnover of vacuolar phenolic metabolites, a task that also forms part of the molecular program of disease resistance. Although peroxidase is a constitutive enzyme in grapevines, its levels are strongly modulated during plant cell development and in response to both biotic and abiotic environmental factors. To gain an insight into the metabolic regulation of peroxidase, several authors have studied how grapevine peroxidase and H2O2 levels change in response to a changing environment. Nevertheless, the results obtained are not always easy to interpret. Despite such difficulties, the response of the peroxidase–H2O2 system to both UV-C radiation and Trichoderma viride elicitors is worthy of study. Both UV-C and T. viride elicitors induce specific changes in peroxidase isoenzyme / H2O2 levels, which result in specific changes in grapevine physiology and metabolism. In the case of T. viride-elicited grapevine cells, they show a particular mechanism for H2O2 production, in which NADPH oxidase-like activities are apparently not involved. However, they offer a unique system whereby the metabolic regulation of peroxidase by H2O2, with all its cross-talks and downstream signals, may be elegantly dissected.


2021 ◽  
Author(s):  
Minoru Kurisu ◽  
Reinhard Kissner ◽  
Masayuki Imai ◽  
Peter Walde

AbstractThe synthesis of the emeraldine salt form of polyaniline (PANI-ES) from aniline with Aspergillus sp. glucose oxidase (GOD), d-glucose, dissolved O2, and horseradish peroxidase isoenzyme C (HRPC) in the presence of large unilamellar vesicles of AOT (sodium bis-(2-ethylhexyl)sulfosuccinate) as templates at pH = 4.3 and T ~ 25 °C was investigated in a systematic way. In this cascade reaction mixture, the oxidation of aniline is catalyzed by HRPC with H2O2 that is formed in situ as byproduct of the GOD-catalyzed oxidation of d-glucose with O2. Under the elaborated experimental conditions which we considered ideal, the formation of PANI-ES products is evident, as judged by UV/Vis/NIR and EPR measurements. Comparison was made with a reference reaction, which was run under similar conditions with added H2O2 instead of GOD and d-glucose. Although the reference reaction was found to be superior, with the cascade reaction, PANI-ES products can still be obtained with high aniline conversion (> 90%) within 24 h as stable dark green PANI-ES/AOT vesicle dispersion. Our results show that the in situ formation of H2O2 does not prevent the inactivation of HRPC known to occur in the reference reaction. Moreover, the GOD used in the cascade reaction is inactivated as well by polymerization intermediates.


1991 ◽  
pp. 271-283 ◽  
Author(s):  
J. E. Gray ◽  
B. A. McClure ◽  
I. Bonig ◽  
M. A. Anderson ◽  
A. E. Clarke

Sign in / Sign up

Export Citation Format

Share Document