A comparison of constitutive heterochromatin staining methods in two cases of familial heterochromatin deficiencies

1979 ◽  
Vol 52 (1) ◽  
Author(s):  
C.H.C.M. Buys ◽  
G.J.P.A. Anders ◽  
W.L. Gouw ◽  
J.M.M. Borkent-Ypma ◽  
J.A.M. Blenkers-Platter
2018 ◽  
Vol 154 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Beata Grzywacz ◽  
Haruki Tatsuta ◽  
Kei-ichiro Shikata ◽  
Elżbieta Warchałowska-Śliwa

In the present paper, karyotypes of 7 Japanese Podismini species, Anapodisma beybienkoi, Fruhstorferiola okinawaensis, Parapodisma caelestis, P. mikado, P. setouchiensis, P. tenryuensis, and Sinopodisma punctata (2n♂ = 21, all acrocentric), are described and compared on the basis of conventional (C-banding, DAPI/CMA3-staining, Ag-NOR) and molecular (FISH with 18S rDNA and telomeric probes) cytogenetic staining methods. This is the first study to report karyotypes of A. beybienkoi and P. caelestis. Differential staining techniques showed karyotypic diversity in these species. The number of 18S rDNA signals ranged from 2 to 6, and the signals were located on the autosomes or sex chromosomes. In all species, clusters of rDNA coincided with Ag-NORs. Telomeric signals occurred at the chromosome ends at the pachytene stage and seldom at other stages of meiosis. Paracentromeric and some distal and interstitial blocks of constitutive heterochromatin were detected in the chromosomes of Anapodisma, Fruhstorferiola, and Parapodisma species. Staining with DAPI and CMA3 revealed 2 groups of heterochromatin composition. In addition, intraspecific differences in the number of rDNA clusters and C-bands were observed within Parapodisma species. Based on the evidence of cytogenetic characteristics, the monophyly of Tonkinacridina cannot be supported.


Author(s):  
Lee F. Ellis ◽  
Richard M. Van Frank ◽  
Walter J. Kleinschmidt

The extract from Penicillum stoliniferum, known as statolon, has been purified by density gradient centrifugation. These centrifuge fractions contained virus particles that are an interferon inducer in mice or in tissue culture. Highly purified preparations of these particles are difficult to enumerate by electron microscopy because of aggregation. Therefore a study of staining methods was undertaken.


Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
R. Espinosa ◽  
M. M. Le Beau

We have shown previously that isotope-labelled nucleotides in human metaphase chromosomes can be detected and mapped by imaging secondary ion mass spectrometry (SIMS), using the University of Chicago high resolution scanning ion microprobe (UC SIM). These early studies, conducted with BrdU- and 14C-thymidine-labelled chromosomes via detection of the Br and 28CN- (14C14N-> labelcarrying signals, provided some evidence for the condensation of the label into banding patterns along the chromatids (SIMS bands) reminiscent of the well known Q- and G-bands obtained by conventional staining methods for optical microscopy. The potential of this technique has been greatly enhanced by the recent upgrade of the UC SIM, now coupled to a high performance magnetic sector mass spectrometer in lieu of the previous RF quadrupole mass filter. The high transmission of the new spectrometer improves the SIMS analytical sensitivity of the microprobe better than a hundredfold, overcoming most of the previous imaging limitations resulting from low count statistics.


Author(s):  
K. Siangchaew ◽  
J. Bentley ◽  
M. Libera

Energy-filtered electron-spectroscopic TEM imaging provides a new way to study the microstructure of polymers without heavy-element stains. Since spectroscopic imaging exploits the signal generated directly by the electron-specimen interaction, it can produce richer and higher resolution data than possible with most staining methods. There are basically two ways to collect filtered images (fig. 1). Spectrum imaging uses a focused probe that is digitally rastered across a specimen with an entire energy-loss spectrum collected at each x-y pixel to produce a 3-D data set. Alternatively, filtering schemes such as the Zeiss Omega filter and the Gatan Imaging Filter (GIF) acquire individual 2-D images with electrons of a defined range of energy loss (δE) that typically is 5-20 eV.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Abyt Ibraimov

In many animals, including us, the genetic sex is determined at fertilization by sex chromosomes. Seemingly, the sex determination (SD) in human and animals is determined by the amount of constitutive heterochromatin on Y chromosome via cell thermoregulation. It is assumed the medulla and cortex tissue cells in the undifferentiated embryonic gonads (UEG) differ in vulnerability to the increase of the intracellular temperature. If the amount of the Y chromosome constitutive heterochromatin is enough for efficient elimination of heat difference between the nucleus and cytoplasm in rapidly growing UEG cells the medulla tissue survives. Otherwise it doomed to degeneration and a cortex tissue will remain in the UEG. Regardless of whether our assumption is true or not, it remains an open question why on Y chromosome there is a large constitutive heterochromatin block? What is its biological meaning? Does it relate to sex determination, sex differentiation and development of secondary sexual characteristics? If so, what is its mechanism: chemical or physical? There is no scientifically sound answer to these questions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lin Xiao ◽  
Dongping Gong ◽  
Loufeng Liang ◽  
Anwei Liang ◽  
Huaxin Liang ◽  
...  

Abstract Background Intervertebral disc degeneration (IDD) is a major cause of lower back pain. This study aimed at exploring the effects of histone deacetylase 4 (HDAC4) and its upstream and downstream signaling molecules on IDD development. Methods A murine IDD model was established by inducing a needle puncture injury to the vertebrate, whereupon we isolated and transfected of nucleus pulposus (NP) cells. Disc height index (DHI) of the mice was determined by X-ray tomography, while the pain experienced by the IDD mice was evaluated by mechanical and thermal sensitivity tests. Next, the interaction between GSK3β and HDAC4 as well as that between HDAC4 and KLF5 acetylation was assessed by co-immunoprecipitation, while the promoter region binding was assessed identified by chromatin immunoprecipitation. By staining methods with TUNEL, Safranin O fast green, and hematoxylin and eosin, the NP cell apoptosis, degradation of extracellular matrix, and morphology of intervertebral disc tissues were measured. Furthermore, mRNA and protein expressions of GSK3β, HDAC4, KLF5, and ASK1, as well as the extent of HDAC4 phosphorylation, were determined by RT-qPCR and Western blotting. Results GSK3β was identified to be downregulated in the intervertebral disc tissues obtained from IDD mice, while HDAC4, KLF5, and ASK1 were upregulated. HDAC4 silencing alleviated IDD symptoms. It was also found that GSK3β promoted the phosphorylation of HDAC4 to increase its degradation, while HDAC4 promoted ASK1 expression through upregulating the expression of KLF5. In IDD mice, GSK3β overexpression resulted in increased DHI, inhibition of NP cell apoptosis, alleviation of disc degeneration, and promoted mechanical and thermal pain thresholds. However, HDAC4 overexpression reversed these effects by promoting ASK1 expression. Conclusion Based on the key findings of the current study, we conclude that GSK3β can promote degradation of HDAC4, which lead to an overall downregulation of the downstream KLF5/ASK1 axis, thereby alleviating the development of IDD.


1984 ◽  
Vol 26 (5) ◽  
pp. 564-568 ◽  
Author(s):  
Orlando Moreira-Filho ◽  
Luiz Antonio Carlos Bertollo ◽  
Pedro Manoel Galetti Jr.

Nucleolar organizer regions (NORs) were studied in mitotic chromosomes of four species of fish of family Parodontidae: Parodon tortuosus, Apareiodon affinis, Apareiodon ibitiensis, and Apareiodon piracicabae. All four species exhibited only a single nucleolar chromosome pair in their karyotypes. Intraspecific differences were observed in the size of these chromosomes; however, these were not very clear for A. affinis and A. piracicabae, Apareiodon piracicabae exhibited two clearly visible NORs in each of the nucleolar chromosomes, which was the only configuration practically found in this species. This trait therefore predominates in a homozygous condition in the population investigated. Regions of constitutive heterochromatin adjacent to the two NORs were detected. Possible mechanisms that may have originated the two NORs are discussed.Key words: nucleolar organizing regions, fish.


Sign in / Sign up

Export Citation Format

Share Document