scholarly journals Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly

1987 ◽  
Vol 56 (2-3) ◽  
pp. 69-87 ◽  
Author(s):  
M. Egelhaaf ◽  
W. Reichardt
2021 ◽  
pp. 109810
Author(s):  
Wenzheng Xu ◽  
Fengwei Guo ◽  
Xin Liang ◽  
Tianlun Yan ◽  
Yang Xu ◽  
...  

2017 ◽  
Vol 117 (2) ◽  
pp. 566-581 ◽  
Author(s):  
James C. Dooley ◽  
Michaela S. Donaldson ◽  
Leah A. Krubitzer

The functional organization of the primary visual area (V1) and the importance of sensory experience in its normal development have been well documented in eutherian mammals. However, very few studies have investigated the response properties of V1 neurons in another large class of mammals, or whether sensory experience plays a role in shaping their response properties. Thus we reared opossums ( Monodelphis domestica) in normal and vertically striped cages until they reached adulthood. They were then anesthetized using urethane, and electrophysiological techniques were used to examine neuronal responses to different orientations, spatial and temporal frequencies, and contrast levels. For normal opossums, we observed responses to the temporal and spatial characteristics of the stimulus to be similar to those described in small, nocturnal, eutherian mammals such as rats and mice; neurons in V1 responded maximally to stimuli at 0.09 cycles per degree and 2.12 cycles per second. Unlike other eutherians, but similar to other marsupials investigated, only 40% of the neurons were orientation selective. In stripe-reared animals, neurons were significantly more likely to respond to vertical stimuli at a wider range of spatial frequencies, and were more sensitive to gratings at lower contrast values compared with normal animals. These results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.NEW & NOTEWORTHY These results are the first description of visual response properties of the most commonly studied marsupial model organism, the short-tailed opossum ( Monodelphis domestica). Further, these results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.


Author(s):  
Bjo̸rnar Svingen ◽  
Morten Kjeldsen ◽  
Roger E. A. Arndt

This paper reviews the issue of making unsteady measurements involving cavitating flow in traditional test loops. Measurements of the dynamic response of a water tunnel during testing of a partially cavitating hydrofoil are presented and reviewed in the context of current theory. Data were collected from an array of pressure transducers that were distributed around the tunnel loop. In the post processing of these data, gain and phase response data were calculated. Theoretical analysis consisted of splitting the system into different elements, and included the compressibility of water in the physics used to describe each element. While solving the global system an eigenvalue solution was found, thus no node specific solution is obtained. This work is currently being extended with the aim of obtaining node specific values such that a more direct comparison between the experimental and theoretical work can be made.


2011 ◽  
Vol 97-98 ◽  
pp. 235-240 ◽  
Author(s):  
Lei Liu ◽  
Yan Xuan ◽  
Lan Wang ◽  
Jia Lin Sun

Seriously inhomogeneous track rigidity of turnout will strengthen the dynamic response of wheel/rail system and shorten its service life. Combined with complicated structure characteristics of turnout, the simulation calculation model of track rigidity had been established. Main factors which influence the track rigidity were considered, such as the rail changing section, sharing baseplate, the foundation under rail. Distribution regularity of track rigidity in turnout had been obtained. The calculation result showed that track rigidity of turnout was seriously inhomogeneous. The maximum track rigidity was 162.2kN/mm in point rail of stock line, and the minimum track rigidity was 69.5kN/mm in stock rail of switch line.


2016 ◽  
Author(s):  
Inbal Ayzenshtat ◽  
Jesse Jackson ◽  
Rafael Yuste

AbstractThe response properties of neurons to sensory stimuli have been used to identify their receptive fields and functionally map sensory systems. In primary visual cortex, most neurons are selective to a particular orientation and spatial frequency of the visual stimulus. Using two-photon calcium imaging of neuronal populations from the primary visual cortex of mice, we have characterized the response properties of neurons to various orientations and spatial frequencies. Surprisingly, we found that the orientation selectivity of neurons actually depends on the spatial frequency of the stimulus. This dependence can be easily explained if one assumed spatially asymmetric Gabor-type receptive fields. We propose that receptive fields of neurons in layer 2/3 of visual cortex are indeed spatially asymmetric, and that this asymmetry could be used effectively by the visual system to encode natural scenes.Significance StatementIn this manuscript we demonstrate that the orientation selectivity of neurons in primary visual cortex of mouse is highly dependent on the stimulus SF. This dependence is realized quantitatively in a decrease in the selectivity strength of cells in non-optimum SF, and more importantly, it is also evident qualitatively in a shift in the preferred orientation of cells in non-optimum SF. We show that a receptive-field model of a 2D asymmetric Gabor, rather than a symmetric one, can explain this surprising observation. Therefore, we propose that the receptive fields of neurons in layer 2/3 of mouse visual cortex are spatially asymmetric and this asymmetry could be used effectively by the visual system to encode natural scenes.Highlights–Orientation selectivity is dependent on spatial frequency.–Asymmetric Gabor model can explain this dependence.


Author(s):  
Karl F. Van Orden ◽  
Joseph DiVita

Previous research has demonstrated that search times are reduced when flicker is used to highlight color coded symbols, but that flicker is not distracting when subjects must search for non-highlighted symbols. This prompted an examination of flicker and other stimulus dimensions in a conjunctive search paradigm. In all experiments, at least 15 subjects completed a minimum of 330 trials in which they indicated the presence or absence of target stimuli on a CRT display that contained either 8, 16 or 32 items. In Experiment 1, subjects searched for blue-steady or red-flickering (5.6 Hz) circular targets among blue-flickering and red-steady distractors. Blue-steady targets produced a more efficient search rate (11.6 msec/item) than red-flickering targets (19.3 msec/item). In Experiment 2, a conjunction of flicker and size (large and small filled circles) yielded the opposite results; the search performance for large-flickering targets was unequivocally parallel. In Experiment 3, conjunctions of form and flicker yielded highly serial search performance. The findings are consistent with the response properties of parvo and magnocellular channels of the early visual system, and suggest that search is most efficient when one of these channels can be filtered completely.


Sign in / Sign up

Export Citation Format

Share Document