The intron of a plastid gene from a green alga contains an open reading frame for a reverse transcriptase-like enzyme

1989 ◽  
Vol 218 (2) ◽  
pp. 257-265 ◽  
Author(s):  
Ulrich Kück
2004 ◽  
Vol 70 (12) ◽  
pp. 7140-7147 ◽  
Author(s):  
Jaishree Vellore ◽  
Samuel E. Moretz ◽  
Bert C. Lampson

ABSTRACT The production of a stable cDNA copy of an unstable RNA molecule by reverse transcription is a widely used and essential technology for many important applications, such as the construction of gene libraries, production of DNA probes, and analysis of gene expression by reverse transcriptase PCR (RT-PCR). However, the synthesis of full-length cDNAs is frequently inefficient, because the RT commonly used often produces truncated cDNAs. Synthesizing cDNA at higher temperatures, on the other hand, can provide a number of improvements. These include increasing the length of cDNA product, greater accuracy, and greater specificity during reverse transcription. Thus, an RT that remains stable and active at hot temperatures may produce better-quality cDNAs and improve the yield of full-length cDNAs. Described here is the discovery of a gene, designated trt, from the genome of the thermophilic bacterium Bacillus (Geobacillus) stearothermophilus strain 10. The gene codes for an open reading frame (ORF) similar to the ORFs encoded by group II introns found in bacteria. The gene was cloned and overexpressed in Escherichia coli, and its protein product was partially purified. Like the host organism, the Trt protein is a heat-stable protein with RT activity and can reverse transcribe RNA at temperatures as high as 75°C.


1999 ◽  
Vol 73 (3) ◽  
pp. 2365-2375 ◽  
Author(s):  
Ben Berkhout ◽  
Maarten Jebbink ◽  
Jozsef Zsíros

ABSTRACT Of the numerous endogenous retroviral elements that are present in the human genome, the abundant HERV-K family is distinct because several members are transcriptionally active and coding for biologically active proteins. A detailed phylogeny of the HERV-K family based on the partial sequence of the reverse transcriptase (RT) gene revealed a high incidence of an intact RT open reading frame within the HML-2 subgroup of HERV-K elements. In this study, we report the cloning of six full-length HML-2 RT genes, of which five contain an uninterrupted open reading frame. The RT enzymes were expressed as glutathione S-transferase fusion proteins inEscherichia coli, and several HERV-K RT enzymes demonstrated polymerase as well as RNase H activity. Several biochemical properties of the RT polymerase were analyzed, including the template requirements and optimal reaction conditions (temperature, type of divalent cation). Inspection of the nucleotide sequence of the HERV-K RT genes demonstrated a mosaic structure, suggesting that a high level of genetic recombination has occurred in this virus family, which is a hallmark of replication by means of reverse transcription. The selective pressure to maintain the RT coding potential is illustrated by the sequence of a particular HERV-K isolate that contains three 1-nucleotide deletions within a small RT segment, thus maintaining the open reading frame. These combined results may suggest that these endogenous RT enzymes still have a biological function. It is possible that the RT activity was involved in the spread of this major class of retroelements by retrotransposition, and in fact it cannot be excluded that this retrovirus group is still mobile. The endogenous RT activity may also have been involved in the shaping of the human genome, e.g., by formation of pseudogenes.


1991 ◽  
Vol 11 (3) ◽  
pp. 1696-1706
Author(s):  
U Schulte ◽  
A M Lambowitz

The LaBelle-1b strain of Neurospora intermedia contains a 4.1-kb closed-circular mitochondrial plasmid DNA, which encodes a single long open reading frame of 1,151 amino acids reported to have sequence similarity to reverse transcriptases. Here, we show that the LaBelle strain contains a novel DNA polymerase activity that is highly specific for the endogenous LaBelle plasmid DNA in nucleoprotein particles and can be distinguished from the mitochondrial DNA polymerase by several characteristics. Photolabeling experiments indicate that the LaBelle-specific DNA polymerase activity is associated with a polypeptide of 120 kDa, which is in good agreement with the size predicted for the protein encoded by the LaBelle plasmid open reading frame (132 kDa). This 120-kDa polypeptide is found only in the LaBelle strain that contains the mitochondrial plasmid, and it cosegregates with mitochondria in sexual crosses, suggesting that it is encoded by the plasmid. The LaBelle-specific DNA polymerase efficiently uses the artificial DNA substrates, poly(dA)-oligo(dT) and poly(dC)-oligo(dG), but despite its reported sequence similarity to reverse transcriptases, it has very low activity with analogous RNA substrates, poly(rA)-oligo(dT), poly(rC)-oligo(dG), or poly(rCm)-oligo(dG). Considered together with the previous sequence comparisons, our results suggest that the LaBelle plasmid encodes a novel DNA polymerase, which was derived from a protein that was at one time a reverse transcriptase but lost its ability to use RNA templates. This DNA polymerase now presumably functions in replication of the plasmid. Our results constitute the first biochemical evidence for a DNA polymerase activity associated with a mitochondrial plasmid. Further, they may provide insight into the evolution of DNA polymerases from reverse transcriptases, as presumably occurred in the course of evolution following the transition from the so-called RNA world to the present DNA world.


1987 ◽  
Vol 7 (6) ◽  
pp. 2221-2230 ◽  
Author(s):  
W D Burke ◽  
C C Calalang ◽  
T H Eickbush

Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover.


1987 ◽  
Vol 7 (6) ◽  
pp. 2221-2230
Author(s):  
W D Burke ◽  
C C Calalang ◽  
T H Eickbush

Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover.


1995 ◽  
Vol 28 (1) ◽  
pp. 97-99 ◽  
Author(s):  
Bruno Paquin ◽  
Charles J. O'Kelly ◽  
B. Franz Lang

1991 ◽  
Vol 11 (3) ◽  
pp. 1696-1706 ◽  
Author(s):  
U Schulte ◽  
A M Lambowitz

The LaBelle-1b strain of Neurospora intermedia contains a 4.1-kb closed-circular mitochondrial plasmid DNA, which encodes a single long open reading frame of 1,151 amino acids reported to have sequence similarity to reverse transcriptases. Here, we show that the LaBelle strain contains a novel DNA polymerase activity that is highly specific for the endogenous LaBelle plasmid DNA in nucleoprotein particles and can be distinguished from the mitochondrial DNA polymerase by several characteristics. Photolabeling experiments indicate that the LaBelle-specific DNA polymerase activity is associated with a polypeptide of 120 kDa, which is in good agreement with the size predicted for the protein encoded by the LaBelle plasmid open reading frame (132 kDa). This 120-kDa polypeptide is found only in the LaBelle strain that contains the mitochondrial plasmid, and it cosegregates with mitochondria in sexual crosses, suggesting that it is encoded by the plasmid. The LaBelle-specific DNA polymerase efficiently uses the artificial DNA substrates, poly(dA)-oligo(dT) and poly(dC)-oligo(dG), but despite its reported sequence similarity to reverse transcriptases, it has very low activity with analogous RNA substrates, poly(rA)-oligo(dT), poly(rC)-oligo(dG), or poly(rCm)-oligo(dG). Considered together with the previous sequence comparisons, our results suggest that the LaBelle plasmid encodes a novel DNA polymerase, which was derived from a protein that was at one time a reverse transcriptase but lost its ability to use RNA templates. This DNA polymerase now presumably functions in replication of the plasmid. Our results constitute the first biochemical evidence for a DNA polymerase activity associated with a mitochondrial plasmid. Further, they may provide insight into the evolution of DNA polymerases from reverse transcriptases, as presumably occurred in the course of evolution following the transition from the so-called RNA world to the present DNA world.


1985 ◽  
Vol 5 (7) ◽  
pp. 1630-1638 ◽  
Author(s):  
S M Mount ◽  
G M Rubin

We have determined the complete nucleotide sequence of the copia element present at the white-apricot allele of the white locus in Drosophila melanogaster. This transposable element is 5,146 nucleotides long and contains a single long open reading frame of 4,227 nucleotides. Analysis of the coding potential of the large open reading frame, which appears to encode a polyprotein, revealed weak homology to a number of retroviral proteins, including a protease, nucleic acid-binding protein, and reverse transcriptase. Better homology existed between another part of the copia open reading frame and a region of the retroviral pol gene recently shown to be distinct from reverse transcriptase and required for the integration of circular DNA forms of the retroviral genome to form proviruses. Comparison of the copia sequence with those of the Saccharomyces cerevisiae transposable element Ty, several vertebrate retroviruses, and the D. melanogaster copia-like element 17.6 showed that Ty was most similar to copia, sharing amino acid sequence homology and organizational features not found in the other genetic elements.


1985 ◽  
Vol 5 (7) ◽  
pp. 1630-1638
Author(s):  
S M Mount ◽  
G M Rubin

We have determined the complete nucleotide sequence of the copia element present at the white-apricot allele of the white locus in Drosophila melanogaster. This transposable element is 5,146 nucleotides long and contains a single long open reading frame of 4,227 nucleotides. Analysis of the coding potential of the large open reading frame, which appears to encode a polyprotein, revealed weak homology to a number of retroviral proteins, including a protease, nucleic acid-binding protein, and reverse transcriptase. Better homology existed between another part of the copia open reading frame and a region of the retroviral pol gene recently shown to be distinct from reverse transcriptase and required for the integration of circular DNA forms of the retroviral genome to form proviruses. Comparison of the copia sequence with those of the Saccharomyces cerevisiae transposable element Ty, several vertebrate retroviruses, and the D. melanogaster copia-like element 17.6 showed that Ty was most similar to copia, sharing amino acid sequence homology and organizational features not found in the other genetic elements.


Sign in / Sign up

Export Citation Format

Share Document