Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco

1989 ◽  
Vol 215 (2) ◽  
pp. 326-331 ◽  
Author(s):  
Anil Shirsat ◽  
Neville Wilford ◽  
Ronald Croy ◽  
Donald Boulter
2020 ◽  
Author(s):  
D.E. Goszczynski ◽  
M.M. Halstead ◽  
A.D. Islas-Trejo ◽  
H. Zhou ◽  
P.J. Ross

ABSTRACTCharacterizing transcription start sites is essential for understanding the regulatory mechanisms that control gene expression. Recently, a new bovine genome assembly (ARS-UCD1.2) with high continuity, accuracy, and completeness was released; however, the functional annotation of the bovine genome lacks precise transcription start sites and includes a low number of transcripts in comparison to human and mouse. Using the RAMPAGE approach, this study identified transcription start sites at high resolution in a large collection of bovine tissues. We found several known and novel transcription start sites attributed to promoters of protein coding and lncRNA genes that were validated through experimental and in silico evidence. With these findings, the annotation of transcription start sites in cattle reached a level comparable to the mouse and human genome annotations. In addition, we identified and characterized transcription start sites for antisense transcripts derived from bidirectional promoters, potential lncRNAs, mRNAs, and pre-miRNAs. We also analyzed the quantitative aspects of RAMPAGE data for producing a promoter activity atlas, reaching highly reproducible results comparable to traditional RNA-Seq. Lastly, gene co-expression networks revealed an impressive use of tissue-specific promoters, especially between brain and testicle, which expressed several genes in common from alternate transcription start sites. Regions surrounding co-expressed modules were enriched in binding factor motifs representative of their tissues. This annotation will be highly useful for future studies on expression control in cattle and other species. Furthermore, these data provide significant insight into transcriptional activity for a comprehensive set of tissues.


2007 ◽  
Vol 44 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Maria Oszvald ◽  
Mark Gardonyi ◽  
Cecília Tamas ◽  
Imre Takacs ◽  
Barnabas Jenes ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sayaka Nagamoto ◽  
Miyuki Agawa ◽  
Emi Tsuchitani ◽  
Kazunori Akimoto ◽  
Saki Kondo Matsushima ◽  
...  

AbstractGenome editing techniques such as CRISPR/Cas9 have both become common gene engineering technologies and have been applied to gene therapy. However, the problems of increasing the efficiency of genome editing and reducing off-target effects that induce double-stranded breaks at unexpected sites in the genome remain. In this study, we developed a novel Cas9 transduction system, Exci-Cas9, using an adenovirus vector (AdV). Cas9 was expressed on a circular molecule excised by the site-specific recombinase Cre and succeeded in shortening the expression period compared to AdV, which expresses the gene of interest for at least 6 months. As an example, we chose hepatitis B, which currently has more than 200 million carriers in the world and frequently progresses to liver cirrhosis or hepatocellular carcinoma. The efficiencies of hepatitis B virus genome disruption by Exci-Cas9 and Cas9 expression by AdV directly (Avec) were the same, about 80–90%. Furthermore, Exci-Cas9 enabled cell- or tissue-specific genome editing by expressing Cre from a cell- or tissue-specific promoter. We believe that Exci-Cas9 developed in this study is useful not only for resolving the persistent expression of Cas9, which has been a problem in genome editing, but also for eliminating long-term DNA viruses such as human papilloma virus.


Cell ◽  
2016 ◽  
Vol 165 (6) ◽  
pp. 1389-1400 ◽  
Author(s):  
Unmesh Jadhav ◽  
Kodandaramireddy Nalapareddy ◽  
Madhurima Saxena ◽  
Nicholas K. O’Neill ◽  
Luca Pinello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document