II?VI semiconductor alloy films: Cd1?xZnxTe

1993 ◽  
Vol 28 (2) ◽  
pp. 496-500 ◽  
Author(s):  
P. Gupta ◽  
K. K. Chattopadhyay ◽  
S. Chaudhuri ◽  
A. K. Pal
2021 ◽  
Vol 1016 ◽  
pp. 509-515
Author(s):  
Yasushi Hamanaka ◽  
Kojiro Matsumoto

Semiconductor alloy films of Cu2ZnSn1-xGexS4 (CZTGS) were prepared by deposition and sintering of mixed nanoparticle suspensions composed of Cu2ZnSnS4 (CZTS) and Cu2ZnGeS4 (CZGS) nanoparticles with 1-dodecanethiol surfactant. Colloidal CZTS and CZGS nanoparticles were synthesized via the liquid-phase route and used without post-processing treatment. The CZTGS films are crystallized in the form of kesterite structures and form an alloy of CZTS and CZGS without an apparent phase separation. The Sn/Ge ratios in the alloy films were finely controlled by tuning a mixing ratio between CZTS and CZGS nanoparticles. The bandgap energy of the CZTGS film systematically increased from 1.6 to 2.1 eV as the Ge-substitution for Sn in the films proceeded, which indicates the potential of the fabrication method in the manufacture of bandgap-tuned multinary semiconductor thin films.


2001 ◽  
Vol 63 (15) ◽  
Author(s):  
J. H. Li ◽  
J. Kulik ◽  
V. Holý ◽  
Z. Zhong ◽  
S. C. Moss ◽  
...  

2002 ◽  
Vol 715 ◽  
Author(s):  
Zhi-Feng Huang ◽  
Rashmi C. Desai

AbstractThe morphological and compositional instabilities in the heteroepitaxial strained alloy films have attracted intense interest from both experimentalists and theorists. To understand the mechanisms and properties for the generation of instabilities, we have developed a nonequilibrium, continuum model for the dislocation-free and coherent film systems. The early evolution processes of surface pro.les for both growing and postdeposition (non-growing) thin alloy films are studied through a linear stability analysis. We consider the coupling between top surface of the film and the underlying bulk, as well as the combination and interplay of different elastic effects. These e.ects are caused by filmsubstrate lattice misfit, composition dependence of film lattice constant (compositional stress), and composition dependence of both Young's and shear elastic moduli. The interplay of these factors as well as the growth temperature and deposition rate leads to rich and complicated stability results. For both the growing.lm and non-growing alloy free surface, we determine the stability conditions and diagrams for the system. These show the joint stability or instability for film morphology and compositional pro.les, as well as the asymmetry between tensile and compressive layers. The kinetic critical thickness for the onset of instability during.lm growth is also calculated, and its scaling behavior with respect to misfit strain and deposition rate determined. Our results have implications for real alloy growth systems such as SiGe and InGaAs, which agree with qualitative trends seen in recent experimental observations.


2003 ◽  
Vol 766 ◽  
Author(s):  
Sungjin Hong ◽  
Seob Lee ◽  
Yeonkyu Ko ◽  
Jaegab Lee

AbstractThe annealing of Ag(40 at.% Cu) alloy films deposited on a Si substrate at 200 – 800 oC in vacuum has been conducted to investigate the formation of Cu3Si at the Ag-Si interface and its effects on adhesion and resistivity of Ag(Cu)/Si structure. Auger electron spectroscopy(AES) analysis showed that annealing at 200°C allowed a diffusion of Cu to the Si surface, leading to the significant reduction in Cu concentration in Ag(Cu) film and thus causing a rapid drop in resistivity. In addition, the segregated Cu to the Si surface reacts with Si, forming a continuous copper silicide at the Ag(Cu)/Si interface, which can contribute to an enhanced adhesion of Ag(Cu)/Si annealed at 200 oC. However, as the temperature increases above 300°C, the adhesion tends to decrease, which may be attributed to the agglomeration of copper silicide beginning at around 300°C.


2021 ◽  
Vol 9 (5) ◽  
pp. 2754-2763
Author(s):  
Kenya Kani ◽  
Hyunsoo Lim ◽  
Andrew E. Whitten ◽  
Kathleen Wood ◽  
Anya J. E. Yago ◽  
...  

The mesoporous RhNi alloy films are synthesized by controlling the concentration of Rh precursor, applied potentials, and pH via the electrochemical co-deposition method with self-assembled polymeric micelles templates for enhancing electrocatalytic properties.


2020 ◽  
Vol 9 (1) ◽  
pp. 751-759 ◽  
Author(s):  
Xinxin Lian ◽  
Yuanjiang Lv ◽  
Haoliang Sun ◽  
David Hui ◽  
Guangxin Wang

AbstractAg nanoparticles/Mo–Ag alloy films with different Ag contents were prepared on polyimide by magnetron sputtering. The effects of Ag contents on the microstructure of self-grown Ag nanoparticles/Mo–Ag alloy films were investigated using XRD, FESEM, EDS and TEM. The Ag content plays an important role in the size and number of uniformly distributed Ag nanoparticles spontaneously formed on the Mo–Ag alloy film surface, and the morphology of the self-grown Ag nanoparticles has changed significantly. Additionally, it is worth noting that the Ag nanoparticles/Mo–Ag alloy films covered by a thin Ag film exhibits highly sensitive surface-enhanced Raman scattering (SERS) performance. The electric field distributions were calculated using finite-difference time-domain analysis to further prove that the SERS enhancement of the films is mainly determined by “hot spots” in the interparticle gap between Ag nanoparticles. The detection limit of the Ag film/Ag nanoparticles/Mo–Ag alloy film for Rhodamine 6G probe molecules was 5 × 10−14 mol/L. Therefore, the novel type of the Ag film/Ag nanoparticles/Mo–Ag alloy film can be used as an ideal SERS-active substrate for low-cost and large-scale production.


Sign in / Sign up

Export Citation Format

Share Document