The influence of fluid inertia, viscosity and extra stress on the load bearing capacity of a squeeze film of oil

1979 ◽  
Vol 35 (2-3) ◽  
pp. 217-235 ◽  
Author(s):  
D. R. Oliver
1978 ◽  
Vol 34 (1) ◽  
pp. 25-47 ◽  
Author(s):  
D. R. Oliver ◽  
R. C. Ashton ◽  
G. D. Wadelin

Author(s):  
D. Dowson ◽  
C. M. Taylor

A preliminary examination of the bearing indicates that it is not capable of hydrodynamic action as the fluid film is parallel in the direction of motion. However, in practice it has been found that the bearing can support considerable loads. Earlier papers by the authors have examined the proposal of Shaw and Strang that the inertia of the lubricant could account for the load capacity of the bearing. This contention was rejected by the authors, and after other possible explanations had been investigated it was concluded that thermal distortion was the most likely cause of the load-bearing capacity. In this paper recent work will be reported which supports this proposal. The analysis of fluid inertia effects is summarized for a continuous hemispherical seat whose surface is disturbed only by the central lubricant supply hole (the grooveless case). The paper also presents experimental results and an approximate analysis of the thermal distortion for a hydrosphere seat with four lubricant grooves running from the supply hole to the equator along longitudinal lines.


2019 ◽  
Vol 7 (2) ◽  
pp. 93-101
Author(s):  
M M Munshi ◽  
A R Patel ◽  
G M Deheri

The study focuses on analyzing the effect of slip velocity in the case of a Ferrofluid squeeze film when the surface of truncated cone-shaped plates has a longitudinal roughness. Each oblique to the bottom plate was utilized by the external magnetic field. The bearing surface has a roughness that is designed with the help of a random stochastic variable having a nonzero mean, skewness and variance. The load carrying ability of a bearing system’s surface is determined by calculating the dispersal of pressure in the system, which is calculated by using the associated stochastically average Reynolds’ equation. The graphs obtained from the study shows that there is a correlation between the longitudinal surface roughness and the bearing system performance. The magnetic fluid lubrication has a positive impact on a system’s bearing capacity. However, the load bearing capacity declines as a result of the effect of slip. A high negative skewness of the surface roughness also has a positive impact on a bearing’s load carrying capacity. One interesting finding shows that contrasting to the results of transverse roughness, standard deviation positively impacts the load bearing capacity. This investigation suggests despite the im-portance of aspect ratio and semi vertical angle is significant for performance enhancement, it is also essential to maintain the slip at the lowest level.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Sign in / Sign up

Export Citation Format

Share Document