scholarly journals Nd-Sr isotope composition of lower crustal xenoliths ? Evidence for the origin of mid-tertiary felsic volcanics in Mexico

1988 ◽  
Vol 99 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Joaquin Ruiz ◽  
P. Jonathan Patchett ◽  
Richard J. Arculus
2006 ◽  
Vol 152 (5) ◽  
pp. 571-589 ◽  
Author(s):  
Friedrich Lucassen ◽  
Wolfgang Kramer ◽  
Viola Bartsch ◽  
Hans-Gerhard Wilke ◽  
Gerhard Franz ◽  
...  

2021 ◽  
Vol 62 (4) ◽  
pp. 415-426
Author(s):  
E.I. Lastochkin ◽  
G.S. Ripp ◽  
D.S. Tsydenova ◽  
V.F. Posokhov ◽  
A.E. Murzintseva

Abstract —We consider the isotope-geochemical features of epithermal fluorite deposits in Transbaikalia, including the REE compositions, Sr isotope ratios, Sm–Nd systems, and isotope compositions of oxygen, carbon, hydrogen, and sulfur. The 87Sr/86Sr ratios in fluorites are within 0.706–0.708, and the εNd values are negative. Oxygen in quartz, the main mineral of the deposits, has a light isotope composition (δ18O = –3.4 to +2.6‰), and the calculated isotope composition of oxygen in the fluid in equilibrium with quartz (δ18O = –9 to –16‰) indicates the presence of meteoric water. The latter is confirmed by analysis of the isotope compositions of oxygen and hydrogen in gas–liquid inclusions in fluorites from three deposits. These isotope compositions are due to recycling caused by the impact of shallow basic plutons. The isotope composition of sulfur indicates its deep source. During ascent, sulfur became enriched in its light isotope (δ34S = –1.8 to –7.7‰). We assess the association of fluorite ores with basaltoids widespread in the study area. The isotope and geochemical parameters suggest their spatial proximity. Probably, the basaltoids were responsible for the recycling of meteoric water. It is shown that the epithermal fluorite deposits formed by the same mechanism as fissure–vein thermal waters in western Transbaikalia.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Hilary Downes ◽  
Andrew Carter ◽  
Richard Armstrong ◽  
Gabor Dobosi ◽  
Antal Embey-Isztin

AbstractNeogene alkaline intraplate volcanic deposits in the Pannonian Basin (Hungary) contain many lower crustal granulite-facies xenoliths. U-Pb ages have been determined for zircons separated from a metasedimentary xenolith, using LA-ICPMS and SHRIMP techniques. The zircons show typical metamorphic characteristics and are not related to the hostmagmatism. The oldest age recorded is late Devonian, probably related to Variscan basement lithologies. Several grains yield Mesozoic dates for their cores, which may correspond to periods of orogenic activity. Most of the zircons show young ages, with some being Palaeocene-Eocene, but the majority being younger than 30Ma. The youngest zircons are Pliocene (5.1-4.2 Ma) and coincide with the age of eruptions of the host alkali basalts. Such young zircons, so close to the eruption age, are unusual in lower crustal xenoliths, and imply that the heat flow in the base of the Pannonian Basin was sufficiently high to keep many of them close to their blocking temperature. This suggests that metamorphism is continuing in the lower crust of the region at the present day.


Author(s):  
L. Angiolini ◽  
D. P. F. Darbyshire ◽  
M. H. Stephenson ◽  
M. J. Leng ◽  
T. S. Brewer ◽  
...  

ABSTRACTThe Lower Permian of the Haushi basin, Interior Oman (Al Khlata Formation to Saiwan Formation/lower Gharif member) records climate change from glaciation, through marine sedimentation in the Haushi sea, to subtropical desert. To investigate the palaeoclimatic evolution of the Haushi Sea we used O, C, and Sr isotopes from 31 brachiopod shells of eight species collected bed by bed within the type-section of the Saiwan Formation. We assessed diagenesis by scanning electron microscopy of ultrastructure, cathodoluminescence, and geochemistry, and rejected fifteen shells not meeting specific preservation criteria. Spiriferids and spiriferinids show better preservation of the fibrous secondary layer than do orthotetids and productids and are therefore more suitable for isotopic analysis. δ18O of −3·7 to −3·1℅ from brachiopods at the base of the Saiwan Formation are probably related to glacial meltwater. Above this, an increase in δ18O may indicate ice accumulation elsewhere in Gondwana or more probably that the Haushi sea was an evaporating embayment of the Neotethys Ocean. δ13C varies little and is within the range of published data: its trend towards heavier values is consistent with increasing aridity and oligotrophy. Saiwan Sr isotope signatures are less radiogenic than those of the Sakmarian LOWESS seawater curve, which is based on extrapolation between few data points. In the scenario of evaporation in a restricted Haushi basin, the variation in Sr isotope composition may reflect a fluvial component.


Sign in / Sign up

Export Citation Format

Share Document