scholarly journals Lower crustal zircons reveal Neogene metamorphism beneath the Pannonian Basin (Hungary)

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Hilary Downes ◽  
Andrew Carter ◽  
Richard Armstrong ◽  
Gabor Dobosi ◽  
Antal Embey-Isztin

AbstractNeogene alkaline intraplate volcanic deposits in the Pannonian Basin (Hungary) contain many lower crustal granulite-facies xenoliths. U-Pb ages have been determined for zircons separated from a metasedimentary xenolith, using LA-ICPMS and SHRIMP techniques. The zircons show typical metamorphic characteristics and are not related to the hostmagmatism. The oldest age recorded is late Devonian, probably related to Variscan basement lithologies. Several grains yield Mesozoic dates for their cores, which may correspond to periods of orogenic activity. Most of the zircons show young ages, with some being Palaeocene-Eocene, but the majority being younger than 30Ma. The youngest zircons are Pliocene (5.1-4.2 Ma) and coincide with the age of eruptions of the host alkali basalts. Such young zircons, so close to the eruption age, are unusual in lower crustal xenoliths, and imply that the heat flow in the base of the Pannonian Basin was sufficiently high to keep many of them close to their blocking temperature. This suggests that metamorphism is continuing in the lower crust of the region at the present day.

Author(s):  
B. J. Williamson ◽  
H. Downes ◽  
M. F. Thirlwall

ABSTRACTThe Velay granite pluton (Massif Central, France) is the youngest (304 ± 5 Ma) and largest (∼6,900 km2) of the major Massif Central monzogranites/granodiorites and was formed nearly 50 Ma after the cessation of Hercynian continental collision (Pin & Duthou 1990). It is a highly heterogeneous pluton consisting of I-type, high-Sr granites (Sr = 500-900 ppm) with low (+35 to +41) and high (-3 to -5), at its centre, grading into S-type and mixed I-S-type heterogeneous granites of more normal Sr content (100–420 ppm) and higher (+40 to +210) and lower (-3·8 to -7.3) at its margins.The metasedimentary lower crust of the Massif Central was underplated/intruded by mafic mantle-derived magmas between 360 Ma and 300 Ma. From 300-280 Ma (Downes et al. 1991) underplating led to partial melting and granulite facies metamorphism of the underplated material (represented by felsic and mafic meta-igneous lower crustal xenoliths, = –11 to +112, = +2·2 to 8·2, Downes et al 1990). The partial melts assimilated mainly schist but also felsic gneiss and older granite country rock material ( = +100 to +300, = - 5 to -9) to produce the heterogeneous granites. Plagioclase and biotite were accumulated at the base of the intrusion which was intruded to high levels to form the high-Sr granites.


1990 ◽  
Vol 54 (376) ◽  
pp. 463-483 ◽  
Author(s):  
A. Embey-Isztin ◽  
H. G. Scharbert ◽  
H. Dietrich ◽  
H. Poultidis

AbstractThe Transdanubian Volcanic Region (TVR) is composed mainly of Pliocene alkali basalts, basanites, olivine basalts and olivine tholeiites, as well as rare nephelinites. The partial melting and genesis of alkali basaltic liquids is a consequence of an upwelling of the upper mantle which also caused thinning of the lithosphere and recent sinking of the Pannonian Basin.Four different types of lower crustal and upper-mantle xenoliths are found within the TVR: garnet-free and garnet-bearing granulites, clinopyroxenites and spinel lherzolites. We present mineralogical and geochemical data on granulite facies and clinopyroxenite xenoliths from three localities in the Hungarian part of the TVR (Bondoróhegy, Szentbékálla and Szigliget). It is concluded that, whilst the protoliths of the granulite facies xenoliths were tholeiitic igneous rocks and could be part of an ancient crust, the clinopyroxenite xenoliths represent recent underplating and may have formed from an alkali basaltic liquid similar to the host lava. Planar contact relations between clinopyroxenites and spinel lherzolites as observed in composite xenoliths, as well as high Al-contents in clinopyroxenes, point to a high-pressure genesis in the upper mantle for these rocks. In contrast, geobarometrical estimates yielded only a moderate pressure range characteristic of lower crustal levels for the garnet-free granulite xenoliths (7–9 kbar). Nevertheless, two-pyroxene geothermometry yielded high temperatures of equilibration (>900°C) for these xenoliths, probably caused by advective heat transfer connected with underplating and in agreement with the high present-day geothermal gradient of this region. In the Central Range localities only garnet-free granulite xenoliths occur, whereas at the border of the TVR both garnet-free and garnet-bearing granulite facies nodules are found. It is possible that the incoming of garnet is retarded by higher temperatures in the lower crust below the Central Range.It is also suggested that the difference in seismically measured crustal thickness between the Central Range and adjacent basin areas may be connected with different thermal conditions below these regions and that the seismically defined Moho and the petrological Moho do not necessarily coincide.


Sign in / Sign up

Export Citation Format

Share Document