Adenylyl cyclase deficient cr-1 (Crisp) mutant of Neurospora crassa: Cyclic AMP-dependent nutritional deficiencies

1979 ◽  
Vol 123 (3) ◽  
pp. 251-258 ◽  
Author(s):  
H�ctor F. Terenzi ◽  
Jo�o A. Jorge ◽  
Jos� E. Roselino ◽  
Renato H. Migliorini
1996 ◽  
Vol 737 (1-2) ◽  
pp. 155-161 ◽  
Author(s):  
Willy L Bonkale ◽  
Johan Fastbom ◽  
Birgitta Wiehager ◽  
Rivka Ravid ◽  
Bengt Winblad ◽  
...  

1995 ◽  
Vol 19 (4) ◽  
pp. 320-323 ◽  
Author(s):  
Tadako Murayama ◽  
Yasuyuki Fujisawa ◽  
Yoko Okano

1994 ◽  
Vol 14 (12) ◽  
pp. 8272-8281
Author(s):  
S Impey ◽  
G Wayman ◽  
Z Wu ◽  
D R Storm

Studies carried out with mammals and invertebrates suggest that Ca(2+)-sensitive adenylyl cyclases may be important for neuroplasticity. Long-term potentiation in the hippocampus requires increases in intracellular Ca2+ which are accompanied by elevated cyclic AMP (cAMP). Furthermore, activation of cAMP-dependent protein kinase is required for the late stage of long-term potentiation in the CA1 region of the hippocampus, which is also sensitive to inhibitors of transcription. Therefore, some forms of synaptic plasticity may require coordinate regulation of transcription by Ca2+ and cAMP. In this study, we demonstrate that the expression of type I adenylyl cyclase in HEK-293 cells allows Ca2+ to stimulate reporter gene activity mediated through the cAMP response element. Furthermore, simultaneous activation by Ca2+ and isoproterenol caused synergistic stimulation of transcription in HEK-293 cells and cultured neurons. We propose that Ca2+ and neurotransmitter stimulation of type I adenylyl cyclase may play a role in synaptic plasticity by generating optimal cAMP signals for regulation of transcription.


1981 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
M L Pall ◽  
J M Trevillyan ◽  
N Hinman

Strains of Neurospora crassa mutant in either of two genes, Crisp-1 (cr1) and Frost (fr), showed no increase of cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels when subjected to several treatments which produce large increases of cyclic AMP in wild-type Neurospora. Evidently, the previously reported deficiencies of adenylate cyclase in these mutants were sufficient to block the normal increases. This fact suggests that both mutants could be used to help determine which control phenomena involve cyclic AMP and to interrupt the control of established cyclic AMP-regulated functions. Earlier studies had suggested an interdependence of the cyclic AMP level and the electric potential difference across the plasma membrane of Neurospora. Present experiments, therefore, employed several strains with the cr1 mutation to test for possible roles of cyclic AMP in recovery and oscillatory behavior of the Neurospora membrane potential. The results showed all such phenomena to be normal in the adenylate cyclase-defective strains, which demonstrates that variations of cyclic AMP are not obligatorily involved in the apparent control processes. Evidence is also presented that the induction of both glucose transport system II and the alternative oxidase do not require elevated cyclic AMP levels.


2003 ◽  
Vol 17 (11) ◽  
pp. 1380-1391 ◽  
Author(s):  
Marie Georget ◽  
Philippe Mateo ◽  
Grégoire Vandecasteele ◽  
Larissa Lipskaia ◽  
Nicole Defer ◽  
...  

1980 ◽  
Vol 26 (12) ◽  
pp. 1508-1511 ◽  
Author(s):  
Ann D. E. Fraser ◽  
Hiroshi Yamazaki

It has not been clarified whether the utilization of mannose by Escherichia coli requires adenosine 3′,5′-cyclic monophosphate (cyclic AMP). Using an adenylyl cyclase deficient mutant (CA8306B) and a cyclic AMP receptor protein (CRP) deficient mutant (5333B) we have shown that the utilization of mannose is dependent on the cyclic AMP–CRP complex. 2-Deoxyglucose (DG) is a nonmetabolizable glucose analog specific for the phosphotransferase system (PTS) which transports mannose (termed here PTSM). Growth of CA8306B on glycerol is unaffected by addition of the analog, whereas growth of the strain on glycerol plus cyclic AMP ceases im mediately upon addition of DG. These results suggest that the formation of PTSM is dependent on cyclic AMP. In addition, CA8306B grown on glycerol plus cyclic AMP can immediately utilize mannose when transferred to a medium containing mannose as a sole carbon source, whereas the same strain grown on glycerol without cyclic AMP cannot utilize mannose when so transferred. These results suggest that the formation of PTSM does not require an exogenous inducer.


1985 ◽  
Vol 232 (2) ◽  
pp. 425-430 ◽  
Author(s):  
M T Téllez-Iñón ◽  
R M Ulloa ◽  
G C Glikin ◽  
H N Torres

Activation of cyclic AMP phosphodiesterase I by brain or Neurospora calmodulin was studied. The stimulation required micromolar concentrations of Ca2+, and it was observed at cyclic AMP concentrations between 0.1 and 500 microM. Activation was blocked by EDTA and some neuroleptic drugs such as chlorpromazine and fluphenazine. These drugs inhibit the elongation of N. crassa wild-type aerial hyphae. These results reinforce the evidence towards the recognition of Ca2+-calmodulin as one of the systems controlling cyclic nucleotide concentrations in Neurospora.


1982 ◽  
Vol 133 (3) ◽  
pp. 206-208 ◽  
Author(s):  
M. S. Kritsky ◽  
V. Y. Sokolovsky ◽  
T. A. Belozerskaya ◽  
E. K. Chernysheva

2007 ◽  
Vol 85 (4) ◽  
pp. 257-266 ◽  
Author(s):  
Cecilia Martin ◽  
Jessica S. Jacobi ◽  
Gabriel Nava ◽  
Michael C. Jeziorski ◽  
Carmen Clapp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document