Phenotypic modulation of smooth muscle cells during the formation of neointimal thickenings in the rat carotid artery after balloon injury: an electron-microscopic and stereological study

1995 ◽  
Vol 281 (3) ◽  
pp. 421-433 ◽  
Author(s):  
Johan Thyberg ◽  
Karin Blomgren ◽  
Ulf Hedin ◽  
Maciej Dryjski
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Tenghui Tian ◽  
Keying Yu ◽  
Miao Zhang ◽  
Xiao Shao ◽  
Liping Chang ◽  
...  

In-stent restenosis (ISR) is the main factor affecting the outcome of percutaneous coronary intervention (PCI), and its main pathological feature is neointimal hyperplasia. Huotan Jiedu Tongluo decoction (HTJDTLD) is an effective traditional Chinese medicine (TCM) prescription for the treatment of vascular stenosis diseases. However, the precise anti-ISR mechanism of HTJDTLD remains unclear. Here, we investigated whether HTJDTLD can inhibit the excessive activation of endoplasmic reticulum stress (ERS) and reduce the level of autophagy factors through regulating the PERK-eIF2α-ATF4 pathway, thereby inhibiting the proliferation of the intima of blood vessels damaged by balloon injury (BI) and preventing the occurrence of ISR. In this study, a 2F Fogarty balloon was used to establish a common carotid artery (CCA) BI model in male Sprague-Dawley rats. Then, HTJDTLD (16.33 g/kg/d) or atorvastatin (1.19 mg/kg/d) was administered by gavage. Four weeks later, hematoxylin-eosin (HE) and Masson staining of the injured CCA were performed to observe the histological changes in the CCA. Immunohistochemistry (IHC) was used to assess the proliferation and dedifferentiation of vascular smooth muscle cells (VSMCs) in the CCA. Western blotting and RT-PCR were used to measure the expression of ERS- and autophagy-related proteins and mRNAs in the CCA. The results indicated that HTJDTLD significantly alleviated BI-induced carotid artery intimal hyperplasia and fibrosis and reduced the neointimal area (NIA) and NIA/medial area (MA) ratio. In addition, HTJDTLD inhibited the proliferation and dedifferentiation of VSMCs, reduced the expression of proliferating cell nuclear antigen (PCNA), and increased the smooth-muscle-α-actin- (SMα-actin-) positive area. HTJDTLD also significantly reduced the expression of the ERS-related factors: GRP78, p-PERK/PERK, p-eIF2α/eIF2α, ATF4, and CHOP. In addition, the expression of the autophagy-related factors, Beclin1, LC3B, and ATG12, was significantly decreased. In addition, in vitro experiments showed that HTJDTLD inhibited the above-mentioned ERS signal molecules in human umbilical vein endothelial cells (HUVEC) and rat aortic smooth muscle cells (A7R5) induced by tunicamycin (TM) and played a crucial role in protecting cells from damage. HTJDTLD may be a very promising drug for the treatment of ISR.


Hypertension ◽  
1997 ◽  
Vol 29 (4) ◽  
pp. 1044-1050 ◽  
Author(s):  
Naoharu Iwai ◽  
Masafumi Izumi ◽  
Tadashi Inagami ◽  
Masahiko Kinoshita

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Mieko Oka ◽  
Nobuhiko Ohno ◽  
Takakazu Kawamata ◽  
Tomohiro Aoki

Introduction: Intracranial aneurysm (IA) affects 1 to 5 % in general public and becomes the primary cause of subarachnoid hemorrhage, the most severe form of stroke. However, currently, no drug therapy is available for IAs to prevent progression and rupture of lesions. Elucidation of mechanisms underlying the disease is thus mandatory. Considering the important role of vascular smooth muscle cells (SMCs) in the maintenance of stiffness of arterial walls and also in the pathogenesis of atherosclerosis via mediating inflammatory responses, we in the present study analyzed morphological or phenotypical changes of SMCs during the disease development in the lesions. Methods: We subjected rats to an IA model in which lesions are induced by increase of hemodynamic force loading on intracranial arterial bifurcations and performed histopathological analyses of induced lesions including the electron microscopic examination. We then immunostained specimens from induced lesions to explore factors responsible for dedifferentiation or migration of SMCs. In vitro study was also done to examine effect of some candidate factors on dedifferentiation or migration of cultured SMCs. Results: We first found the accumulation of SMCs underneath the endothelial cell layer mainly at the neck portion of the lesion. These cells was positive for the embryonic form of myosin heavy chain, a marker for the dedifferentiated SMCs, and the expression of pro-inflammatory factors like TNF-α. In immunostaining to explore the potential factor regulating the dedifferentiation of SMCs, we found that Platelet-derived growth factor-BB (PDGF-BB) was expressed in endothelial cells at the neck portion of IA walls. Consistently, recombinant PDGF-BB could promote the dedifferentiate of SMCs and chemo-attracted them in in vitro. Finally, in the stenosis model of the carotid artery, PDGF-BB expression was induced in endothelial cells in which high wall shear stress was loaded and the dedifferentiation of SMCs occurred there. Conclusions: The findings from the present study imply the role of dedifferentiated SMCs partially recruited by PDGF-BB from endothelial cells in the formation of inflammatory microenvironment at the neck portion of IA walls, leading to the progression of the disease.


Sign in / Sign up

Export Citation Format

Share Document