Use of protein A-coated colloidal gold particles for immunoelectronmicroscopic localization of ACTH on ultrathin sections

1979 ◽  
Vol 60 (3) ◽  
pp. 317-320 ◽  
Author(s):  
T. F. C. Batten ◽  
C. R. Hopkins
1997 ◽  
Vol 5 (5) ◽  
pp. 12-13
Author(s):  
Paul Webster

Colloidal gold has been used for centuries in the preparation of stained glass for windows and fine glassware. In recent years, colloidal gold particles have become a useful tool in microscopy for staining tissues and sections. Colloidal gold particles are especially useful for biological electron microscopy, Some of the reasons why are listed below.*Homogeneous preparations of particles varying in size from 3μm to 20μm can be easily prepared.*Colloidal gold suspensions are inexpensive to prepare. Most proteins can be easily coupled to colloidal gold particles.*Most proteins can be easily coupled to colloidal gold particles.*Proteins coupled to gold particles do not appear to lose their biological activity.*The colloidal gold particles can be easily seen in the electron microscope.*Colloidal gold does not naturally occur in biological material. Therefore, if you see it, it is because you put it there.*Colloidal gold probes can be used for light microscopy, The larger gold particles can be directly observed by the light microscope. Small particles are detected by silver enhancement or epipolarized illumination.*The same probes can be used for both LM and TEM imrnunocytochemistry.


1981 ◽  
Vol 89 (3) ◽  
pp. 653-665 ◽  
Author(s):  
H J Geuze ◽  
J W Slot ◽  
P A van der Ley ◽  
R C Scheffer

Complexes of protein-A with 5 and 16 nm colloidal gold particles (PA/Au5 and PA/Au16) are presented as sensitive and clean immunoprobes for ultrathin frozen sections of slightly fixed tissue. The probes are suitable for indirect labeling and offer the opportunity to mark multiple sites. The best procedure for double labeling was to use the smaller probe first, i.e., antibody 1 - PA/Au5 - antibody 2 - PA/Au16. When this was done, no significant interference between PA/Au5 and PA/Au16 occurred. Using this double-labeling procedure we made an accurate comparison between the subcellular distributions of amylase as a typical secretory protein and of GP-2 a glycoprotein, characteristic for zymogen granule membrane (ZGM) preparations. We prepared two rabbit antibodies against GP-2. One antibody (R x ZGM) was obtained by immunizing with native membrane material. The specificity of R x ZGM was achieved by adsorption with the zymogen granule content subfraction. The other, R x GP-2, was raised against the GP-2 band of the SDS polyacrylamide profile of ZGM. We found that the carbohydrate moiety of GP-2 was involved in the antigenic determinant for R x ZGM, while R x GP-2 was most likely directed against GP-2 polypeptide backbone. THe immunocytochemical observations showed that GP-2, on the one hand, exhibited the characteristics of a membrane protein by its occurrence in the cell membrane, the Golgi membranes, and its association with the membranes of the zymogen granules. On the other hand, GP-2 was present in the contents of the zymogen granules and in the acinar and ductal lumina. Also, a GP-2-like glycoprotein was found in the cannulated pancreatic secretion (Scheffer et al., 1980, Eur. J. Cell Biol. 23:122-128). Hence, GP-2 should be considered as a membrane-associated secretory protein of the rat pancreas.


1988 ◽  
Vol 36 (6) ◽  
pp. 693-696 ◽  
Author(s):  
T Uchida ◽  
T Endo

We report here the ultrastructural localization of S-100b protein-like immunoreactivity in the centriole, cilia, and basal body. Duodenum and trachea of guinea pigs and rats were fixed and immunostained by the protein A-gold method. All centrioles, cilia, and basal bodies observed showed clear S-100b protein-like immunoreactivity. Specific colloidal gold particles were located over the microtubules in these cell organelles. However, other microtubules scattered throughout the cytoplasm were devoid of immunoreactivity. Although the functional significance of S-100b protein-like immunoreactivity in the centriole, cilia, and basal bodies remains to be elucidated, the present results introduce new perspectives into the investigation of localization and function of S-100 proteins.


1986 ◽  
Vol 34 (6) ◽  
pp. 719-726 ◽  
Author(s):  
A I Lukinius ◽  
J L Ericsson ◽  
M K Lundqvist ◽  
E M Wilander

This study was performed with the aim of ultrastructurally localizing serotonin and polypeptide YY (PYY) in the endocrine cells of the human rectum. Existing basic methods for immunolocalization of antigenic sites in ultrathin sections were tested and modified to allow reproducible results with distinct localization of marker (colloidal gold probes coupled either to IgG or protein A). Probes signifying presence of serotonin were distinctly localized over all heteromorphous granules in argentaffin cells and, in addition, over some of the more monomorphous, rounded granules in a second cell type whose granules all were covered by probes showing localization of the PYY antigen. The results suggest that serotonin in endocrine cells of the gut is not confined to the enterochromaffin type but may also be present in trace amounts in non-enterochromaffin endocrine cells storing peptide hormones. Since probes marking sites of PYY were deposited over some heteromorphous granules in enterochromaffin cells, the evidence obtained also suggests that PYY may occur in low concentration in these cells. The distribution of probes in the sections indicated that antigenic sites were confined to granules in the cells.


Author(s):  
Lucian Ghitescu ◽  
Moise Bendayan

By using 125I protein A, we have prepared complexes of this immunoprobe with colloidal gold particles having diameters ranging from 5 to 15 nm. Various concentrations of protein A (from 35 to 1000 nM) of known specific activity were employed in order to obtain a spectrum of conjugates differing not only in sizes, but also in amounts of protein A they carry. After ultracentrifugation through a step gradient (15, 30 and 70% w/v) of sucrose, the protein A-gold complexes were quantitatively recovered from the most dense layer, and diluted in a 0.01 M phosphate buffer containing 0.01% polyethylene glycol. The conjugates did not contain free protein A, as proven by the lack of radioactivity in the intermediate sucrose layers. By correlating the radioactivity of the complexes with their particle densities (inferred from the optical absorbance at 520 nm), the number of protein A molecules bound per gold particle was calculated for each experimental condition.


1985 ◽  
Vol 33 (9) ◽  
pp. 891-899 ◽  
Author(s):  
T Adachi ◽  
S Hisano ◽  
S Daikoku

To determine differential tissue antigens in the same section immunocytochemically using the electron microscope, the neurohypophysis was examined following the application of a freeze-drying tissue preparation and staining with the protein A-colloidal gold-antibody complex method (Hisano S, Adachi T, Daikoku S: J Histochem Cytochem 32:705, 1984). At the light microscopic level, colocalized immunostaining for methionine-enkephalin (ENK) and oxytocin (OXT) was found in the rat neurohypophysis under different physiological states. Small pieces of the neurohypophysial tissue were frozen and dried. The dried tissue was fixed with paraformaldehyde vapor and embedded. The ultrathin sections were stained with the antibody for ENK coupled with protein A-small colloidal gold, and antibody for OXT or vasopressin (VP) conjugated with protein A-large colloidal gold. The ultrastructures of the nerve terminals were well preserved and showed many membrane-limited secretory granules. It was possible to identify both OXT- and VP-containing nerve terminals as their secretory granules were differentially labeled with protein A-colloidal gold anti-OXT or anti-VP complex, respectively. The secretory granules, which were labeled with large gold particles for OXT, also carry small gold particles. It is evident that ENK coexists with OXT in the same granules.


1981 ◽  
Vol 90 (2) ◽  
pp. 533-536 ◽  
Author(s):  
J W Slot ◽  
H J Geuze

Gold particles in colloidal solutions often vary considerably in size. The finest sols (diameter less than 15 nm), especially, are very heterogeneous, as is indicated by coefficients of variance (CV) of 25-35%. We have complexed staphylococcal protein A with gold particles (PA/Au) and then fractionated the preparations by glycerol or sucrose gradient centrifugation into very homogeneous subfractions. In this way, PA/Au probes of almost any size between 4.5 and 15 nm could be prepared. The variation of the gold particles in these fractions resulted in CV's between 9 and 16%. The reactivity of the PA/Au complex was not affected by the gradient procedure, as was shown by single- and double-labeling immunocytochemistry of ultrathin cryosections of rat pancreatic tissue.


1987 ◽  
Vol 35 (11) ◽  
pp. 1277-1284 ◽  
Author(s):  
R Jemmerson ◽  
M Agre

Two monoclonal antibodies (mAbs) to different epitopes on human placental alkaline phosphatase (PLAP), both of the immunoglobulin G2a heavy-chain class and having similar affinities for PLAP, were compared for their ability to label the enzyme on the HeLa cell surface. In one type of experiment employing [125I]-labeled mAbs, the results demonstrated quantitative differences in binding of the mAbs to the cells. At saturating levels, the number of molecules of mAb E5 bound to the cells was almost eight times the number of mAb B10 molecules bound. In another type of experiment, mAbs were indirectly visualized on the cell surface using protein A tagged with colloidal gold particles in transmission electron microscopy. Only one of the antibodies (E5) displayed a clustered distribution of PLAP that previously had been observed with rabbit polyclonal antibodies and goat anti-rabbit IgG-labeled gold (J Histochem Cytochem 33:1227, 1985). The other antibody (B10) showed less frequent and more scattered labeling; three to four times more gold particles were visualized in each cluster on cells bound by mAb E5 compared to cells bound by B10. These results are consistent with the idea that not all epitopes on a membrane-bound antigen may be equally accessible for antibody binding. Even identical epitopes on different PLAP molecules are not equally hindered by other membrane components, since at least some of the PLAP molecules are labeled by the more sterically hindered mAb B10. Quantification of the number of gold particles employing the more abundantly bound mAb E5 provides an average estimate of seven to eight molecules of PLAP in each cluster. Because of inefficiencies in labeling, however, this value is probably lower than the real number.


Sign in / Sign up

Export Citation Format

Share Document