A dynamic technique for measuring normal spectral emissivity of electrically conducting solids at high temperatures with a high-speed spatial scanning pyrometer

1993 ◽  
Vol 14 (5) ◽  
pp. 1109-1114 ◽  
Author(s):  
A. Cezairliyan ◽  
A. P. Miiller
2018 ◽  
Vol 49 (15) ◽  
pp. 1445-1458
Author(s):  
Deheng Shi ◽  
Fenghui Zou ◽  
Zunlue Zhu ◽  
Jinfeng Sun

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Joseph J. S. Shang ◽  
Hong Yan

Abstract Nearly all illuminating classic hypersonic flow theories address aerodynamic phenomena as a perfect gas in the high-speed range and at the upper limit of continuum gas domain. The hypersonic flow is quantitatively defined by the Mach number independent principle, which is derived from the asymptotes of the Rankine-Hugoniot relationship. However, most hypersonic flows encounter strong shock-wave compressions resulting in a high enthalpy gas environment that always associates with nonequilibrium thermodynamic and quantum chemical-physics phenomena. Under this circumstance, the theoretic linkage between the microscopic particle dynamics and macroscopic thermodynamics properties of gas is lost. When the air mixture is ionized to become an electrically conducting medium, the governing physics now ventures into the regimes of quantum physics and electromagnetics. Therefore, the hypersonic flows are no longer a pure aerodynamics subject but a multidisciplinary science. In order to better understand the realistic hypersonic flows, all pertaining disciplines such as the nonequilibrium chemical kinetics, quantum physics, radiative heat transfer, and electromagnetics need to bring forth.


2021 ◽  
Vol 173 ◽  
pp. 112848
Author(s):  
Shuangbao Shu ◽  
Ziyi Wang ◽  
Huajun Liang ◽  
Yuzhong Zhang ◽  
Chengliang Pan ◽  
...  

2016 ◽  
Vol 78 ◽  
pp. 214-222 ◽  
Author(s):  
Shunan Zhao ◽  
Xunfeng Li ◽  
Xiaoming Zhou ◽  
Keyong Cheng ◽  
Xiulan Huai

2020 ◽  
Vol 48 (5-6) ◽  
pp. 423-438
Author(s):  
JUERGEN BRILLO ◽  
JOHANNA J. WESSING ◽  
HIDEKAZU KOBATAKE ◽  
HIROYUKI FUKUYAMA

The normal spectral emissivity ε of four compositions in the Al-Ti binary liquid system was measured in dependence of the wavelength and temperature. It was found that all compositions show negligible temperature dependence. At a wavelength of 940 nm, the emissivity amounts to 0.37, 0.40, 0.32, and 0.31 for Ti, Al20Ti80, Al50Ti50, and Al70Ti30, respectively. The dependence of the emissivity on composition is in good agreement with literature data of binary and multi-component Al-Ti-based alloys. Using the classical Drude model, electrical resistivities are predicted for the Al-Ti system from the measured emissivities. Comparison with existing data from literature for Al show reasonable agreement.


Author(s):  
Masayoshi Adachi ◽  
Yuji Yamagata ◽  
Manabu Watanabe ◽  
Sonoko Hamaya ◽  
Makoto Ohtsuka ◽  
...  

1999 ◽  
Vol 14 (3) ◽  
pp. 715-728 ◽  
Author(s):  
P. Zhao ◽  
D. G. Morris ◽  
M. A. Morris Munoz

High-temperature forging experiments have been carried out by axial compression testing on a Fe–41Al–2Cr alloy in order to determine the deformation systems operating under such high-speed, high-temperature conditions, and to examine the textures produced by such deformation and during subsequent annealing to recrystallize. Deformation is deduced to take place by the operation of 〈111〉 {110} and 〈111〉{112} slip systems at low temperatures and by 〈100〉{001} and 〈100〉{011} slip systems at high temperatures, with the formation of the expected strong 〈111〉 textures. The examination of the weak 〈100〉 texture component is critical to distinguishing the operating slip system. Both texture and dislocation analyses are consistent with the operation of these deformation systems. Recrystallization takes place extremely quickly at high temperatures (above 800 °C), that is within seconds after deformation and also dynamically during deformation itself. Recrystallization changes the texture such that 〈100〉 textures superimpose on the deformation texture. The flow stress peak observed during forging is found at a very high temperature. Possible origins of the peak are examined in terms of the operating slip systems.


Author(s):  
Marie Dabos ◽  
Isabelle Ranc-Darbord ◽  
Marc Genetier ◽  
Nicolas Lecysyn ◽  
Khanh-Hung Tran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document