Dynamic thermomechanical properties of composites based on thermoelastic wave scattering

1990 ◽  
Vol 60 (7) ◽  
pp. 431-443
Author(s):  
V. Kostopoulos ◽  
L. Vellios ◽  
S. A. Paipetis
2021 ◽  
Vol 14 (4) ◽  
pp. 598-602
Author(s):  
Kh. V. Allahverdiyeva ◽  
N. T. Kakhramanov ◽  
U. V. Namazly

Author(s):  
Haibao Lu ◽  
Yong Tang ◽  
Jihua Gou ◽  
Erin Chow ◽  
Jinsong Leng ◽  
...  

To electrically activate the shape recovery in a styrene-based shape-memory polymer (SMP) by coating with conductive carbon nanofiber paper has been demonstrated in this paper. Carbon nanofibers in the form of paper sheet in combination with SMP significantly improve the electrical and thermal conductivity of polymer, leading to the actuation of SMP/nanopaper composite (with 15% volume fraction of carbon nanopaper, dimension of 10.0 cm × 0.5 cm × 0.3 cm) can be carried out by applying 8.4 V voltage, with response time of 140 s. Therefore, electrical conductivity of 6.6 S/cm is obtained. This approach, although demonstrated in styrene-based polymer, is applicable to other type of SMP materials. Furthermore, the morphologies of carbon nanofiber in the form of paper is observed by scanning electron microscopy, and the thermomechanical properties of composites are measured and analyzed by dynamic mechanical analysis.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2476
Author(s):  
Katarzyna Bednarczyk ◽  
Tomasz Kukulski ◽  
Ryszard Fryczkowski ◽  
Ewa Schab-Balcerzak ◽  
Marcin Libera

The thermal, mechanical and electrical properties of polymeric composites combined using polythiophene (PT) dopped by FeCl3 and polyamide 6 (PA), in the aspect of conductive constructive elements for organic solar cells, depend on the molecular structure and morphology of materials as well as the method of preparing the species. This study was focused on disclosing the impact of the polythiophene content on properties of electrospun fibers. The elements for investigation were prepared using electrospinning applying two substrates. The study revealed the impact of the substrate on the conductive properties of composites. In this study composites exhibited good thermal stability, with T5 values in the range of 230–268 °C that increased with increasing PT content. The prepared composites exhibited comparable PA Tg values, which indicates their suitability for processing. Instrumental analysis of polymers and composites was carried out using Fourier Transform Infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM).


1998 ◽  
Vol 542 ◽  
Author(s):  
A. Radisic ◽  
P. S. Valimbe ◽  
V. M. Malhotra

AbstractAutomotive and heavy-duty friction materials are complex multimaterial composites that contain, besides polymers and fibers, a number of constituents whose exact role is not well delineated. Since the performance of these composites requires not only uniform frictional properties but also complex shapes, advanced formation techniques are required. However, before these techniques can be harnessed, we attempted to understand how nitrile rubber-modified phenolic polymer's structural and thermal behaviors were modified by the incorporation of materials such as BaSO4, graphite, coal tar pitch, slag fibers, alumina, and silicon carbide, typical friction composite ingredients. The formed composites were examined by FTIR, DSC, and DMA techniques at 300 K < T < 600 K. Our results suggested that the incorporation of ingredients, singly and additively, strongly affected the thermomechanical properties of the formed


2019 ◽  
Vol 136 (31) ◽  
pp. 47825 ◽  
Author(s):  
Laongdaw Techawinyutham ◽  
Suchart Siengchin ◽  
Jyotishkumar Parameswaranpillai ◽  
Rapeephun Dangtungee

1999 ◽  
Vol 11 (1) ◽  
pp. 117-135
Author(s):  
P. Dineva ◽  
D. Gross ◽  
T. Rangelov

Sign in / Sign up

Export Citation Format

Share Document