Phase I evaluation of divided-dose vinblastine sulfate

1980 ◽  
Vol 5 (1) ◽  
pp. 67-69
Author(s):  
Philip Schulman ◽  
Daniel R. Budman ◽  
Vincent Vinciguerra ◽  
Thomas J. Degnan
1976 ◽  
Vol 12 (3) ◽  
pp. 195-198 ◽  
Author(s):  
R.L. Nelson ◽  
P.J. Creaven ◽  
M.H. Cohen ◽  
B.E. Fossieck

Author(s):  
Krishan Awtar

Exposure of cells to low sublethal but mitosis-arresting doses of vinblastine sulfate (Velban) results in the initial arrest of cells in mitosis followed by their subsequent return to an “interphase“-like stage. A large number of these cells reform their nuclear membranes and form large multimicronucleated cells, some containing as many as 25 or more micronuclei (1). Formation of large multinucleate cells is also caused by cytochalasin, by causing the fusion of daughter cells at the end of an otherwise .normal cell division (2). By the repetition of this process through subsequent cell divisions, large cells with 6 or more nuclei are formed.


Author(s):  
Awtar Krishan

Earle's L-929 fibroblasts treated with mitosis-arresting but sub-lethal doses of vinblastine sulfate (VLB) show hypertrophy of the granular endoplasmic reticulum and annulate lamellae. Exposure of the cells to heavier doses of vincristine sulfate (VCR), a VLB-related drug, leads to the accumulation of large amounts of helical polyribosomes, Golgi membranes and crystals in the cytoplasm. In many of these cells a large number of helical polyribosomes are arranged in prominent linear rows, some of which may be up to 5 micrometers in length. Figure 1 shows a large array of helical polyribosomes near a crystalline mass (CRS) in an Earle's L-929 fibroblast exposed to VCR (5ϒ/ml.) for 3 hours At a higher magnification, as seen in figure 2, the helical polyribosomes are seen arranged in parallel rows. In favorably cut sections, a prominent backbone like "stalk" of finely granular material, measuring approximately 300Å in width is seen in close association with the linear rows of helical polyribosomes.


2020 ◽  
Vol 29 (4) ◽  
pp. 2109-2130
Author(s):  
Lauren Bislick

Purpose This study continued Phase I investigation of a modified Phonomotor Treatment (PMT) Program on motor planning in two individuals with apraxia of speech (AOS) and aphasia and, with support from prior work, refined Phase I methodology for treatment intensity and duration, a measure of communicative participation, and the use of effect size benchmarks specific to AOS. Method A single-case experimental design with multiple baselines across behaviors and participants was used to examine acquisition, generalization, and maintenance of treatment effects 8–10 weeks posttreatment. Treatment was distributed 3 days a week, and duration of treatment was specific to each participant (criterion based). Experimental stimuli consisted of target sounds or clusters embedded nonwords and real words, specific to each participants' deficit. Results Findings show improved repetition accuracy for targets in trained nonwords, generalization to targets in untrained nonwords and real words, and maintenance of treatment effects at 10 weeks posttreatment for one participant and more variable outcomes for the other participant. Conclusions Results indicate that a modified version of PMT can promote generalization and maintenance of treatment gains for trained speech targets via a multimodal approach emphasizing repeated exposure and practice. While these results are promising, the frequent co-occurrence of AOS and aphasia warrants a treatment that addresses both motor planning and linguistic deficits. Thus, the application of traditional PMT with participant-specific modifications for AOS embedded into the treatment program may be a more effective approach. Future work will continue to examine and maximize improvements in motor planning, while also treating anomia in aphasia.


2007 ◽  
Vol 177 (4S) ◽  
pp. 202-202
Author(s):  
Hirotsugu Uemura ◽  
Motoyoshi Tanaka ◽  
Shigeya Uejima ◽  
Takafumi Minami ◽  
Kiyohide Fujimoto ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 72-72 ◽  
Author(s):  
Vincenzo Serretta ◽  
Carlo Pavone ◽  
Antonio Galuffo ◽  
Nino Dispensa ◽  
Marco Vella ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document