A simple method of fast extracellular solution exchange for the study of whole-cell or single channel currents using patch-clamp technique

1987 ◽  
Vol 410 (3) ◽  
pp. 335-337 ◽  
Author(s):  
S. Hering ◽  
D. J. Beech ◽  
T. B. Bolton
1998 ◽  
Vol 275 (2) ◽  
pp. C535-C543 ◽  
Author(s):  
C. A. Obejero-Paz ◽  
M. Auslender ◽  
A. Scarpa

The possibility that protein kinase C (PKC) could control the activity of L-type Ca2+ channels in A7r5 vascular smooth muscle-derived cells in the absence of agonist stimulation was investigated using the patch-clamp technique. Consistent with the possibility that L-type Ca2+ channels are maximally phosphorylated by PKC under these conditions, we show that 1) activation of PKC with the phorbol ester phorbol 12,13-dibutyrate was ineffective in modulating whole cell and single-channel currents, 2) inhibition of PKC activity with staurosporine or chelerythrine inhibited channel activity, 3) inhibition of protein phosphatases by intracellular dialysis of okadaic acid did not affect whole cell currents, and 4) the inhibitory effect of staurosporine was absent in the presence of okadaic acid. The inhibition of Ca2+ currents by PKC inhibitors was due to a decrease in channel availability and long open events, whereas the voltage dependence of the open probability and the single-channel conductance were not affected. The evidence suggests that in resting, nonstimulated A7r5 cells there is a high level of PKC activity that modulates the gating of L-type Ca2+ channels.


1990 ◽  
Vol 258 (1) ◽  
pp. H247-H254 ◽  
Author(s):  
T. Kimitsuki ◽  
T. Mitsuiye ◽  
A. Noma

Na+ channel kinetics were studied by recording single-channel currents in the cell-attached patch configuration of the patch-clamp technique in single ventricular cells isolated from guinea pig hearts. The inactivation time course of ensemble currents was accelerated, and the peak amplitude increased temporarily and then decreased within a few minutes after the gigaohm seal formation. After reaching a new steady state, the inactivation-voltage relation was found to have shifted to more negative potentials. The potential of half-maximal inactivation was more negative by 20–31 mV from the resting potential or between -96 and -112 mV. The voltage dependency of the channel activation also shifted. Although the cell membrane was depolarized using the whole cell patch-clamp electrode and single-channel currents were recorded with an independent cell-attached electrode, the shift of the inactivation curve was also evident. Complete removal of Ca2+ using 5 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid in the pipette solution failed to prevent the shift. Increasing Ca2+ to 10 mM, however, reduced magnitude of the shift significantly. Involvement of an increased membrane fluidity and surface potential of the glass pipette to the shift is discussed.


1993 ◽  
Vol 177 (1) ◽  
pp. 201-221 ◽  
Author(s):  
H. A. Pearson ◽  
G. Lees ◽  
D. Wray

1. Using the patch-clamp technique, Ca2+ channel currents were recorded from neurones freshly isolated from the thoracic ganglia of the desert locust Schistocerca gregaria. 2. In solutions containing 10 mmol l-1 Ba2+ we observed high-voltage-activated whole-cell inward currents with sustained and transient components, both of which had similar steady-state inactivation properties. 3. Substitution of Ca2+ for Ba2+ was found to reduce whole-cell currents, whereas removal of monovalent cations had no effect. 4. Cd2+ (1 mmol l-1) completely blocked the whole-cell current, but at 10 micromolar preferentially inhibited the sustained component without affecting the transient component. 5. Verapamil (1 micromolar) inhibited both current components but appeared to be more selective for the sustained component, whereas nitrendipine (1 micromolar) had no effect on either component. 6. A single-channel recording suggested that the transient component was carried by a low- conductance channel. 7. Certain compounds with insecticidal action (ryanodine, S-bioallethrin, deltamethrin and avermectin) did not affect calcium channel currents in these cells. 8. These data suggest that there are two types of Ca2+ channels present in locust neurones. These channel types have properties differing from the T-, L- and N-type channels found in vertebrates and, furthermore, were not targets for the insecticides we tested.


1993 ◽  
Vol 265 (1) ◽  
pp. C72-C78 ◽  
Author(s):  
H. Sunose ◽  
K. Ikeda ◽  
Y. Saito ◽  
A. Nishiyama ◽  
T. Takasaka

Single-channel currents of the luminal membrane of marginal cells dissected from the guinea pig cochlea were investigated using the patch-clamp technique. Nonselective cation channels having a linear conductance of 27 pS were activated by depolarization, cytoplasmic Ca2+, and cytoplasmic acidification. Cytoplasmic ATP inactivated the channel. A mixture of 3-isobutyl-1-methylxanthine and forskolin activated a small-conductance Cl channel in the cell-attached mode. On excision in the inside-out mode, the Cl channel was inactivated, but it was reactivated by a cytoplasmic catalytic subunit of protein kinase A with ATP. This Cl channel had a linear conductance of 12 pS, and its activity was little affected by voltage. The sequence of permeation by anions was Br- > Cl > I-. The Cl channel blocker diphenylamine-2-carboxylic acid (3 mM) completely blocked the channel, but 5-nitro-2-(3-phenylpropylamino)-benzoic acid (50 microM) blocked it only partially. The above-mentioned characteristics are similar to those of the well-demonstrated Cl- channel, cystic fibrosis transmembrane regulator.


2000 ◽  
Vol 278 (2) ◽  
pp. H548-H557 ◽  
Author(s):  
Tao Zeng ◽  
Glenna C. L. Bett ◽  
Frederick Sachs

Mechanoelectric transduction can initiate cardiac arrhythmias. To examine the origins of this effect at the cellular level, we made whole cell voltage-clamp recordings from acutely isolated rat ventricular myocytes under controlled strain. Longitudinal stretch elicited noninactivating inward cationic currents that increased the action potential duration. These stretch-activated currents could be blocked by 100 μM Gd3+ but not by octanol. The current-voltage relationship was nearly linear, with a reversal potential of approximately −6 mV in normal Tyrode solution. Current density varied with sarcomere length (SL) according to I (pA/pF) = 8.3 − 5.0SL (μm). Repeated attempts to record single channel currents from stretch-activated ion channels failed, in accord with the absence of such data from the literature. The inability to record single channel currents may be a result of channels being located on internal membranes such as the T tubules or, possibly, inactivation of the channels by the mechanics of patch formation.


1995 ◽  
Vol 269 (3) ◽  
pp. C791-C796 ◽  
Author(s):  
J. K. Bubien

Cortical collecting duct fragments were manually dissected from 6-wk-old Sprague-Dawley rats. The fragments were enzymatically digested (collagenase A) into single cells, washed, and resuspended in serum-free RPMI 1640. Individual cells were examined electrophysiologically using the whole cell patch-clamp technique. Two morphologically distinct cell types were present in the cell suspension. Small round cells that had a capacitance of 7 pF and larger oval cells with a capacitance of 29 pF were consistently observed. Whole cell electrophysiological examination revealed that the small round cells had virtually no plasma membrane ionic conductance, whereas both inward and outward currents were observed in the larger oval-type cells. Also, superfusion of 250 pM arginine vasopressin specifically increased the inward conductance of only the larger cells. The effect could be completely inhibited by 2 microM amiloride or 100 mumol of the Rp diastereomer of 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (a specific adenosine 3',5'-cyclic monophosphate inhibitor). These findings are consistent with the hypothesis that the larger cells are principal cells and the smaller cells are intercalated cells and directly demonstrate that an amiloride-sensitive whole cell conductance is readily observable in freshly isolated cortical collecting duct cells. Thus the whole cell configuration of the patch-clamp technique appears to be well suited for assessing cellular mechanisms that regulate the ionic conductances of cortical collecting duct cells.


Sign in / Sign up

Export Citation Format

Share Document