Optical doppler velocimeter for surface motion measurement

1972 ◽  
Vol 17 (6) ◽  
pp. 1551-1553
Author(s):  
N. N. Vorob'eva ◽  
E. I. Zubarev ◽  
V. M. Kulybin ◽  
B. S. Rinkevichyus
2011 ◽  
Vol 131 (8) ◽  
pp. 641-647
Author(s):  
Tatsuya Furukawa ◽  
Hideaki Itoh ◽  
Toshiyuki Hori ◽  
Hisao Fukumoto ◽  
Hiroshi Wakuya ◽  
...  

2021 ◽  
Author(s):  
Mastri Cahyaningtyas Pediyanti ◽  
Riries Rulaningtyas ◽  
Akif Rahmatillah ◽  
Katherine

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4726
Author(s):  
Jarosław Pytka ◽  
Piotr Budzyński ◽  
Paweł Tomiło ◽  
Joanna Michałowska ◽  
Ernest Gnapowski ◽  
...  

The paper presents the development of the IMUMETER sensor, designed to study the dynamics of aircraft movement, in particular, to measure the ground performance of the aircraft. A motivation of this study was to develop a sensor capable of airplane motion measurement, especially for airfield performance, takeoff and landing. The IMUMETER sensor was designed on the basis of the method of artificial neural networks. The use of a neural network is justified by the fact that the automation of the measurement of the airplane’s ground distance during landing based on acceleration data is possible thanks to the recognition of the touchdown and stopping points, using artificial intelligence. The hardware is based on a single-board computer that works with the inertial navigation platform and a satellite navigation sensor. In the development of the IMUMETER device, original software solutions were developed and tested. The paper describes the development of the Convolution Neural Network, including the learning process based on the measurement results during flight tests of the PZL 104 Wilga 35A aircraft. The ground distance of the test airplane during landing on a grass runway was calculated using the developed neural network model. Additionally included are exemplary measurements of the landing distance of the test airplane during landing on a grass runway. The results obtained in this study can be useful in the development of artificial intelligence-based sensors, especially those for the measurement and analysis of aircraft flight dynamics.


2019 ◽  
Vol 11 (2) ◽  
pp. 166 ◽  
Author(s):  
Yuzhou Liu ◽  
Peifeng Ma ◽  
Hui Lin ◽  
Weixi Wang ◽  
Guoqiang Shi

The Lianjiang Plain in China and ancient villages distributed within the plain are under the potential threat of surface motion change, but no effective monitoring strategy currently exists. Distributed Scatterer InSAR (DSInSAR) provides a new high-resolution method for the precise detection of surface motion change. In contrast to the first-generation of time-series InSAR methodology, the distributed scatterer-based method focuses both on pointwise targets with high phase stability and distributed targets with moderate coherence, the latter of which is more suitable for the comprehensive environment of the Lianjiang Plain. In this paper, we present the first study of surface motion change detection in the Lianjiang Plain, China. Two data stacks, including 54 and 29 images from Sentinel-1A adjacent orbits, are used to retrieve time-series surface motion changes for the Lianjiang Plain from 2015 to 2018. The consistency of measurement has been cross-validated between adjacent orbit results with a statistically significant determination coefficient of 0.92. The temporal evolution of representative measuring points indicates three subzones with varied surface patterns: Eastern Puning (Zone A) in a slight elastic rebound phase with a moderate deformation rate (0–40 mm/yr), Chaonan (Zone B) in a substantial subsidence phase with a strong deformation rate (−140–0 mm/yr), and Chaoyang (Zone C) in a homogeneous and stable situation (−10–10 mm/yr). The spatial distribution of these zones suggests a combined change dynamic and a strong concordance of factors impacting surface motion change. Human activities, especially groundwater exploitation, dominate the subsidence pattern, and natural conditions act as a supplementary inducement by providing a hazard-prone environment. The qualitative and quantitative analysis of spatial and temporal details in this study provides a basis for systematic surface motion monitoring, cultural heritage protection and groundwater resources management.


Author(s):  
Gaurang Ruhela ◽  
Anirvan DasGupta

We consider the problem of a hopping ball excited by a travelling harmonic wave on an elastic surface. The ball, considered as a particle, is assumed to interact with the surface through inelastic collisions. The surface motion due to the wave induces a horizontal drift in the ball. The problem is treated analytically under certain approximations. The phase space of the hopping motion is captured by constructing a phase-velocity return map. The fixed points of the return map and its compositions represent periodic hopping solutions. The linear stability of the obtained periodic solution is studied in detail. The minimum frequency for the onset of periodic hops, and the subsequent loss of stability at the bifurcation frequency, have been determined analytically. Interestingly, for small values of wave amplitude, the analytical solutions reveal striking similarities with the results of the classical bouncing ball problem.


Sign in / Sign up

Export Citation Format

Share Document