Neovasculature and blood-brain barrier in ischemic brain infarct

1988 ◽  
Vol 75 (4) ◽  
pp. 422-426 ◽  
Author(s):  
H. Mei Liu
2019 ◽  
Vol 153 (3) ◽  
pp. 413-425 ◽  
Author(s):  
Bo Yang ◽  
Junjie Xu ◽  
Liuhui Chang ◽  
Zhigang Miao ◽  
Dara Heang ◽  
...  

1996 ◽  
Vol 25 ◽  
pp. S152
Author(s):  
Kanji Muramatsu ◽  
Atsuo Fukuda ◽  
Hajime Togari ◽  
Yoshiro Wada ◽  
Hitoo Nishino

2020 ◽  
Author(s):  
Axel Erik Andersson ◽  
Carina Mallard ◽  
Carl Joakim Ek

Abstract BackgroundNeonatal hypoxia-ischemia often leads to lifelong disabilities with limited treatments currently available. The brain vasculature is an important factor in many neonatal brain pathologies but there is a lack of diagnostic tools to evaluate the brain vascular health of neonates in a clinical setting. Measurement of blood-brain barrier tight-junction proteins have shown promise as biomarkers for brain injury in the adult. Here we tested the biomarker potential of tight-junctions in the context of neonatal brain injury.MethodsThe levels of TJ-proteins (occluding, claudin-5, and zonula occludens-1) in both blood plasma and cerebrospinal fluid (CSF) as well as blood-brain barrier function were measured in a clinically relevant hypoxia/ischemia model in neonatal rats.ResultsTemporally acute elevated levels of occludin and claudin-5 could be measured in blood and CSF after hypoxia/ischemia with males generally having higher levels than females. The levels of claudin-5 in CSF correlated with the severity of the brain injury at 24h post- hypoxia/ischemia. Simultaneously, we detected early increase in blood-brain barrier-permeability at 6 and 24h after hypoxia/ischemia.ConclusionsLevels of circulating claudin-5 and occludin are increased after hypoxic/ischemic brain injuries and blood-brain barrier-impairment and have promise as early biomarkers for cerebral vascular health and as a tool for risk assessment of neonatal brain injuries.


2020 ◽  
Vol 30 (4) ◽  
pp. 746-765 ◽  
Author(s):  
Xuejing Zhang ◽  
Xuelian Tang ◽  
Feifei Ma ◽  
Yanbo Fan ◽  
Ping Sun ◽  
...  

2015 ◽  
Vol 35 (9) ◽  
pp. 1388-1395 ◽  
Author(s):  
Grazyna B Sadowska ◽  
Xiaodi Chen ◽  
Jiyong Zhang ◽  
Yow-Pin Lim ◽  
Erin E Cummings ◽  
...  

Pro-inflammatory cytokines contribute to hypoxic–ischemic brain injury. Blood–brain barrier (BBB) dysfunction represents an important component of hypoxic–ischemic brain injury in the fetus. Hypoxic–ischemic injury could accentuate systemic cytokine transfer across the fetal BBB. There has been considerable conjecture suggesting that systemic cytokines could cross the BBB during the perinatal period. Nonetheless, evidence to support this contention is sparse. We hypothesized that ischemia–reperfusion increases the transfer of systemic interleukin-1β (IL-1β) across the BBB in the fetus. Ovine fetuses at 127 days of gestation were studied 4 hours after 30 minutes of bilateral carotid artery occlusion and compared with a nonischemic group. Recombinant ovine IL-1β protein was expressed from an IL-1β pGEX-2 T vector in E. coli BL-21 cells and purified. The BBB function was quantified in 12 brain regions using a blood-to-brain transfer constant with intravenous 125I-radiolabeled IL-1β (125I-IL-1β). Interleukin-1β crossed the intact BBB in nonischemic fetuses. Blood-to-brain transport of 125I-IL-1β was higher ( P < 0.05) across brain regions in fetuses exposed to ischemia–reperfusion than nonischemic fetuses. We conclude that systemic IL-1β crosses the intact fetal BBB, and that ischemia–reperfusion increases transfer of this cytokine across the fetal BBB. Therefore, altered BBB function after hypoxia–ischemia facilitates entry of systemic cytokines into the brain of the fetus.


Sign in / Sign up

Export Citation Format

Share Document