Veratridine-induced oscillations in membrane potential of cultured rat skeletal muscle: Role of the Na-K pump

1990 ◽  
Vol 10 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Chaya Brodie ◽  
S. R. Sampson
2009 ◽  
Vol 143 (1-2) ◽  
pp. 18-25 ◽  
Author(s):  
Jill Gallaher ◽  
Martin Bier ◽  
Jan Siegenbeek van Heukelom

1995 ◽  
Vol 18 (8) ◽  
pp. 890-898 ◽  
Author(s):  
Simeon P. Cairns ◽  
Angela F. Dulhunty

2011 ◽  
Vol 18 (6) ◽  
pp. 501-511 ◽  
Author(s):  
STEVEN W. COPP ◽  
DANIEL M. HIRAI ◽  
SCOTT K. FERGUSON ◽  
TIMOTHY I. MUSCH ◽  
DAVID C. POOLE

1990 ◽  
Vol 259 (2) ◽  
pp. E148-E154 ◽  
Author(s):  
H. S. Hundal ◽  
P. Babij ◽  
P. W. Watt ◽  
M. R. Ward ◽  
M. J. Rennie

Rat skeletal muscle glutamine fell by 40% from 4.18 to 2.5 mumols/g wet weight (P less than 0.01) after 4 days of denervation. Over the same period net glutamine efflux from denervated hindlimbs [i.e., arteriovenous (a-v) concentration differences x blood flow] increased 3.5-fold (from -6.72 +/- 1.73 to -26 +/- 4.81 nmol.min-1.g-1, P less than 0.001). Gastrocnemius glutamine synthetase activity fell 48% after denervation (from 475 +/- 81 to 248 +/- 39 nmol.min-1.g-1, P less than 0.001), but glutaminase activity was not significantly altered (17 nmol.min-1.g-1). The maximal activity (Vmax) of the unidirectional Na(+)-dependent glutamine transporter (system Nm) was depressed by 45% from 1,020 +/- 104 to 571 +/- 9 nmol.min-1.g-1 (P less than 0.01), but the concentration at which transport was half maximal (Km) was not significantly altered (control 8.1 +/- 0.6 mM; denervated 6.52 +/- 0.12). Hindlimb denervation resulted in an increase of intramuscular Na+ by 17% and a fall of K+ by 12%, and the resting membrane potential in isolated muscles decreased from -75 +/- 10 to -59.5 +/- 5.5 mV. Membrane potential of perfused denervated muscle, isolated after acute addition of the Na+ channel blocker tetrodotoxin (TTX, 3 microM), repolarized to -66.4 +/- 3.2 mV. In perfused denervated preparations TTX caused an acute recovery of Vmax of unidirectional glutamine transport to 848 +/- 75 nmol.min-1.g-1; Km was unaffected.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 278 (1) ◽  
pp. E58-E64 ◽  
Author(s):  
Thomas C. Vary ◽  
Leonard S. Jefferson ◽  
Scot R. Kimball

Insulin-like growth factor I (IGF-I) promotes anabolism by stimulating protein synthesis in skeletal muscle. In the present study, we have examined mechanisms by which IGF-I stimulates protein synthesis in skeletal muscle with a perfused rat hindlimb preparation. IGF-I (10 nM) stimulated protein synthesis over 2.7-fold. Total RNA content was unaffected, but translational efficiency was increased by IGF-I. We next examined the effect of IGF-I on eukaryotic initiation factor (eIF) 4E as a mechanism regulating translation initiation. IGF-I did not alter either the amount of eIF4E associated with the eIF4E binding protein 4E-BP1 or the phosphorylation state of 4E-BP1. Likewise, the phosphorylation state of eIF4E was unaltered by IGF-I. In contrast, the amount of eIF4E bound to eIF4G was increased threefold by IGF-I. We conclude that IGF-I regulates protein synthesis in skeletal muscle by enhancing formation of the active eIF4E ⋅ eIF4G complex.


Sign in / Sign up

Export Citation Format

Share Document