On shear-free motion of charged perfect fluid obeying an equation of state in general relativity

1986 ◽  
Vol 18 (11) ◽  
pp. 1159-1180 ◽  
Author(s):  
D. C. Srivastava
2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Maria A. Skugoreva ◽  
Alexey V. Toporensky

Abstract We consider the cosmological evolution of a flat anisotropic Universe in f(T) gravity in the presence of a perfect fluid. It is shown that the matter content of the Universe has a significant impact of the nature of a cosmological singularity in the model studied. Depending on the parameters of the f(T) function and the equation of state of the perfect fluid in question the well-known Kasner regime of general relativity can be replaced by a new anisotropic solution, or by an isotropic regime, or the cosmological singularity changes its nature to a non-standard one with a finite values of Hubble parameters. Six possible scenarios of the cosmological evolution for the model studied have been found numerically.


1976 ◽  
Vol 29 (5) ◽  
pp. 413 ◽  
Author(s):  
DP Mason

The vorticity propagation equation for a perfect fluid in general relativity is derived in a form which is the same as that of Maxwell's equation for the magnetic field four-vector in relativistic magnetohydrodynamics. Starting from this result, an expression for the change of vorticity during a gravitational collapse is obtained in terms of the spatial geometry, using a procedure similar to that introduced by Cocke (1966) in relativistic magnetohydrodynamics. It is assumed that the equation of state of the fluid is p = 1Xp" where IX is a constant and p, is the total proper energy density. If t < IX :s;; 1, it is found that the vorticity tends to zero during an isotropic collapse, in agreement with a result obtained previously by Ellis (1973) using a different procedure. Nonisotropic collapses are also considered. The dynamical importance of vorticity in a gravitational collapse is examined by considering the behaviour of w2 /p,.


2020 ◽  
Vol 29 (09) ◽  
pp. 2050068 ◽  
Author(s):  
Gauranga C. Samanta ◽  
Nisha Godani ◽  
Kazuharu Bamba

We have proposed a novel shape function on which the metric that models traversable wormholes is dependent. Using this shape function, the energy conditions, equation-of-state and anisotropy parameter are analyzed in [Formula: see text] gravity, [Formula: see text] gravity and general relativity. Furthermore, the consequences obtained with respect to these theories are compared. In addition, the existence of wormhole geometries is investigated.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043028
Author(s):  
M. Ángeles Pérez-García ◽  
Joseph Silk

Neutron Stars (NSs) are compact stellar objects that are stable solutions in General Relativity. Their internal structure is usually described using an equation of state that involves the presence of ordinary matter and its interactions. However there is now a large consensus that an elusive sector of matter in the universe, described as dark matter, remains as yet undiscovered. In such a case, NSs should contain both, baryonic and dark matter. We argue that depending on the nature of the dark matter and in certain circumstances, the two matter components would form a mixture inside NSs that could trigger further changes, some of them observable. The very existence of NSs constrains the nature and interactions of dark matter in the universe.


Sign in / Sign up

Export Citation Format

Share Document